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Abstract

A remarkable thesis prevails in the physics of information, saying that the logical properties 
of operations that are carried out by computers determine their physical properties. More 
specifically, it says that logically irreversible operations are dissipative by  klog2 per bit of 
lost information. (A function is logically irreversible if its input cannot be recovered from 
its output. An operation is dissipative if it turns useful forms of energy into useless ones, 
such as heat energy.) This is Landauer's dissipation thesis, hereafter LDT. LDT underlies 
and motivates numerous researches in physics  and computer science.  Nevertheless,  this 
paper shows that is it plainly wrong. This conclusion is based on a detailed study of LDT 
in terms of the various notions of entropy used in main stream statistical mechanics. It is 
supported by a counter example for LDT. Further support is found in an analysis of the 
phase space representation on which LDT relies. This analysis emphasises the constraints 
placed on the choice of probability distribution by the fact that it has to be the basis for 
calculating  phase  averages  corresponding  to  thermodynamic  properties  of  individual 
systems. An alternative representation is offered, in which logical irreversibility has nothing 
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to  do  with  dissipation.  The  strong  connection  between  logic  and  physics,  that  LDT 
implies, is thereby broken off.

1. Introduction 

A remarkable  thesis  in  the  physics  of  computation states  that  the  logical properties  of 
operations carried out by computers determine some physical properties of these processes. 
The logical property in question is logical irreversibility. A logical function is irreversible if 
it is not 1:1, so that its input cannot be uniquely recovered from its output. The physical 
property  in  question  is  dissipativity.  A  physical  process  is  dissipative  if  it  is  entropy 
increasing, that is, if it takes in energy in a form usable as work and turns it into useless heat 
energy. That logically irreversible computation is dissipative has been the prevalent opinion 
ever  since  Landauer  proposed  it  in  (1961).  Landauer’s  Dissipation Thesis  (hereinafter: 
LDT) is best summarized in Landauer’s (1992, p.2) own words: 

Consider a  typical  logical  process,  which discards information, e.g.,  a 
logical variable that is reset to  0, regardless of its initial state. Fig. [1.1, 
based on Landauer 1992, p.2] shows, symbolically, the phase space of 
the  complete  computer  considered  as  a  closed  system,  with  its  own 
power source. The erasure process we are considering must map the  1 
space down into the 0 space. Now, in a closed conservative system phase 
space  cannot  be  compressed,  hence the  reduction in the [horizontal] 
spread must be compensated by a [vertical] phase space expansion, i.e., a 
heating of the [vertical] irrelevant degrees of freedom, typically thermal 
lattice  vibrations.  Indeed,  we are  involved here  in  a  process  which is 
similar  to  adiabatic  magnetization  (i.e.,  the  inverse  of  adiabatic 
demagnetization), and we can expect the same entropy increase to be 
passed to  the  thermal  background as  in  adiabatic  magnetization,  i.e., 
kln2 per erasure process. At this point, it becomes worthwhile to be a 
little more detailed. Fig. [1.3] shows the end-result of the erasure process 
in which the original  1 and  0 spaces have both been mapped into the 
[horizontal] range originally occupied by the 0. This is, however, rather 
like the isothermal compression of a gas in a cylinder into half its original 
volume. The entropy of the gas has been reduced and the surroundings 
have  been  heated,  but  the  process  is  not  irreversible,  the  gas  can 
subsequently be expanded again. Similarly, as long as  1 and  0 occupy 
distinct  phase  space  regions,  as  shown  in  Fig.  [1.3],  the  mapping  is 
reversible. The real irreversibility comes from the fact that the  1 and  0 
spaces will subsequently be treated alike and will eventually diffuse into 
each other. 

INSERT FIGURE 1 ABOUT HERE.
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Landauer  correctly  adds  that  this  description  does  not  repeat  all that  is  known  and 
understood in the field. Still, the  essence of LDT is summarized in these words.1 LDT is 
truly remarkable for its generality. The dissipation depends only on the logical properties of 
the operations that are carried out by the physical computer. It is the 
same for all computations, regardless of the technology used to carry the computation out.

Landauer's Dissipation Thesis is clearly empirical: it predicts phenomena. Yet, at 
the present stage of technology, it does not express experimental facts of any kind, for it has 
not  yet  been empirically  tested.  It  is  not experimentally  known that  logically  irreversible 
computaion is associated with any minimum amount of dissipation.2 Since LDT has not 
been empirically  tested,  it  rests  on theoretical  arguments  only.  Many people  find these 
arguments  very intuitive  and compelling.  Nevertheless,  various assumptions underlying 
them  are  questionable.  In  particular,  the  notion  of  entropy  that  they  use  is,  at  best, 
puzzling (sections 56). Moreover, the phase space representation of logical operations that 
they employ is problematic. It does not take proper account of some constraints that ought 
to be placed on the choice of probability distribution. The probability distribution over 
phase space is used to calculate phase averages that ought to correspond to thermodynamic 
magnitudes of individual systems. It seems that the probability distribution used in LDT is 
one appropriate for spaces of abstract bits, but not for the physical phase space (sections 
9-10).  Because  of  these  difficulties  LDT  ought  to  be  rejected.  The  strong  connection 
between logic and entropy is consequently broken off. 

The paper  begins  with a  detailed and critical  exposition of  LDT (sections  27), 
followed  by  a  counter  example  (section  8)  and  a  reexamination  of  the  phase  space 
representation  of  memory  cells  on  which  LDT  relies  (section  9).  It  then  proposes  an 
alternative  (10).  The  paper  ends  with  a  brief  discussion  of  the  information  theoretic 
approach to Maxwell's Demon (section 11).

2. What Exactly Is Landauer’s Dissipation Thesis?

To avoid a common confusion, I repeat the outline of some currently accepted ideas. They 
are composed of two premises and a conclusion.
(A) Landauer's Dissipation Thesis: 
Logically irreversible computation is dissipative. It increases entropy by kln2 per bit of lost 
information, regardless of the technology by which the computation is carried out. This 
dissipation is a consequence of the logical irreversibility of the computation in question. 

1 LDT, as well as all the existing arguments for it, are classical. In some cases, LDT is 
automatically carried over to the quantum domain.  The quantum mechanical  LDT 
involves a different kind of reasoning, and is not addressed here.
2 Devices operating on logically reversible principles have been developed, but - even 
if we had the technology to measure a dissipation of  kln2 - they cannot support the 
LDT nor refute it, for obvious logical reasons, known as Hempel’s ravens paradox 
(Hempel 1965). This kind of devices is mentioned as a support for LDT in Landauer 
(1996).
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Therefore, logically reversible computation is not subject to dissipation of this origin. This 
is LDT, and its details are discussed below. 

To this dissipation one must obviously add dissipation of other origins, for LDT 
certainly does not imply that absolutely dissipationless computation is possible. Yet, for the 
sake of simplicity only, in this paper we shall  ignore other sources of dissipation, and call 
processes in which the Landauer dissipation does not occur (ideally) dissipationless.
(B) A Theorem Concerning the Logical reversibility of computations: 
All  computations  can  be  carried  out  in  a  logically  reversible  way.  To  every  logically 
irreversible algorithm there corresponds a logically reversible one having the same output 
plus an output that enables to reverse the computation. By replacing a logically irreversible 
algorithm  by  its  corresponding  reversible  one  we  carry  out  the  original  computation 
reversibly. (Bennett 1973, Fredkin and Toffoli 1982).

This theorem is a logical one. The only way to endow it with a physical implication 
is through associating it with LDT. Therefore, rejecting LDT would leave II as a theorem 
of logic that has nothing to do with dissipation of energy.
(C) Conclusion from I and II: The reversible computation thesis: 
I and  II together  imply  that  all  computations  can  (ideally)  be  carried  out  without 
dissipation, that is, without the sort of dissipation associated with logical irreversibility.

There are two different ways to conclude that computation is, in the ideal case, 
dissipationless. One is rejecting I.  Another is accepting  I and  II and therefore  III. The 
currently prevalent opinion is the latter: it accepts III, the reversible computation thesis, as 
grounded in both I and II. The present paper, on the other hand, questions I,  and does 
not address II and III. 

3. Physical Implementation of Logical Operations

3.1. Bits as Macrostates

LDT is a thesis about the physical properties of physical operations, that implement logical 
operations.  Logical  operations  map abstract  inputs  (typically  bits)  to  abstract  outputs. 
Their physical implementations are processes transforming input physical states (typically 
having binary information bearing degrees  of  freedom) to output  physical  states.3 The 
physical states in question are of memory cells, and the transformation is carried out by 
logical gates acting on the cells. 

The  evolution  of  the  computer  as  a  physical  system  is  a  series  of  microstates. 
However, since it is intended to manipulate bits, the fine distinction between microstates is  
unnecessary,  and  the  computer's  mechanism  need  not  be  sensitive  to  the  difference 
between microscopic  trajectories.  It  is  enough to tune the computer  to  be  sensitive  to 
macroscopic states, called  1 and  0. Each of them is a set of microstates, and the two sets 

3 By  using  the  term  physical  implementation,  I  make  no  claim  regarding  the 
controversial  idea  that  information  is  physical.  This  idea  deserves  a  separate 
philosophical investigation.
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differ in the value of the binary degree of freedom in which the information is stored. The 
computer's phase trajectories can then be described in terms of series of macrostates, or of 
arrays of bits. 

On the one hand, a distinction between the macrostates 1 and 0 is sufficient for the 
computer  to  manipulate  bits;  there  is  no  need  for  it  to  be  sensitive  to  the  difference 
between the microstates belonging to these macrostates. On the other hand, the distinction 
capability between 1 and 0 is certainly a minimum. The computer cannot be less sensitive 
than  that,  being  a  device  that  manipulates  bits.  If  macrostates  are  determined  by 
distinguishability,  then  1 and  0 are  natural macrostates of  the  computer.  (Their 
characterization as natural macrostates does not refer to the subjective capabilities of any 
particular observer, although they can be so interpreted if one prefers this point of view.)4

3.2. Memory as Inaccessibility 

For a system to be a memory cell, its 0 or 1 macrostates (the information bearing degree of 
freedom) must be (a) stable and reliable when intended to store information, and yet (b) 
amenable to manipulation during computation. These requirements have to be satisfied by 
the model of the memory cell that is used to explain its physics. A model not satisfying 
them is not a model of a memory cell that acts in a computer, but of something else. To 
discuss the entropy of computation in the framework of statistical mechanics we need to 
represent the memory cell in its phase space. This representation must take into account 
both requirements, (a) and (b). Let us see how this is done. 

A  fundamental  postulate  of  statistical  mechanics  states  that  a  trajectory  can 
uncontrollably evolve throughout the phase space region accessible for it. External agents 
(constraints) can fix the boundaries of the accessible region, but once these are determined, 
the external agents can no longer control the trajectory’s evolution. Let us call  this  the 
uncontrollability postulate.5 An obvious consequence of the uncontrollability postulate is 
that, to ensure stability and reliability of a memory state, phase space regions belonging to 

4 These  ideas  apply  also  when  bits  are  stored  in  microscopic  objects,  as  in  the 
(currently preliminary attempts to construct) bits for quantum computers. The reason 
is that macrostates are defined by distinguishability, not by the number of degrees of 
freedom (Shenker 1997). The notion of macrostate is further discussed in sections 
5.29, and 10 below.
5 Three remarks are in place regarding this postulate. First, uncontrollability is not 
lawlessness. The trajectory is subject to the laws of nature. Second, uncontrollability 
places  no  constraints  on  the  probability  distribution  of  states,  and  should  not  be 
confused  with  ergodicity  and  the  like.  Third,  a  version  of  the  uncontrollability 
postulate is consistent with the interventionist (or open systems) approach to statistical 
mechanics. In this approach, entropy increase reflects the interaction of the system of 
interest with unknown external systems whose effects, while often dramatic, cannot 
be screened out. Here, the focus is on the unknowability of the agents acting on (or, 
rather,  in) the system, and the crucial point is being unable (even in principle) to 
control and direct the system’s state. 
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different memory states  must be  disjoint and not-inter-accessible, for as long as the cell is 
intended to store information. Whenever inter-accessibility is allowed, the device no longer 
has (or no longer is) a memory.6 On the other hand, inter-accessibility must be allowed 
when the cell is required to change its state during a computation. The inter-accessibility in 
that case must be controlled.7 

As an illustration,  consider Figure 1.1.8 It  depicts  two disjoint regions in phase 
space, one containing all  the microscopic states corresponding to the macroscopic state 
called  0,  and the  other  containing  all  the  microstates  corresponding to  the  macrostate 
called  1.  Due to the continuity of trajectories in phase space on the one hand, and the 
disconnectedness of the two regions on the other hand, a trajectory starting in one such 
region cannot evolve into the other. Figure 2.1 depicts the same idea for a combination of 
two bits. The 0 and 1 states are non-inter-accessible. 

INSERT FIGURE 2 ABOUT HERE.

At this point, we must distinguish inter-accessibility from accessibility. The notion 
of inter-accessibility is a conditional one: if the memory cell is in one macrostate, then it can 
(or cannot) access another. The notion of accessibility, on the other hand, focuses on the 
if-clause only: it determines the states the cell can initially assume. The two notions appear 
as  two  aspects  of  the  phase  space  representation  (Figures  1.1  and  2.1).  Non-inter-
accessibility is  represented  by  the  disconnectedness  of  the  phase  space  regions 
corresponding  to  the  different  memory  macrostates.  Accessibility is  represented  by  the 
selection, among the several disconnected regions, of those belonging to the cell’s accessible 
region. There are two options to be considered here. One: the accessible region consists of a 
single disconnected region at a time, the region containing the cell’s actual state. This idea 
is illustrated in Figure 3. The other option to be considered: the accessible region is a union 
of all  the disconnected regions, here:  both 1 and  0,  with a probability distribution over 
them.  This  is  illustrated in  Figures  1.1  and 2.1.  (The notion of  accessibility  is  further 
discussed in section 9 below.)

6 In  some  realistic  cells  inter-accessibility  is  not  absolutely  impossible,  but  very 
improbable, so that one may reasonably expect no changes of memory state to occur 
during the period of interest. (E.g., Landauer (1961) p. 184 Fig. 2.) In this case the 
two  macrostates  are  not  inter-accessible  for  as  long  as  the  device  has  (or  is)  a 
memory; once inter-accessibility is allowed, the device is no longer a memory. With 
this reservation in mind, we can go on focusing on absolute non-inter-accessibility 
during information storage.
7 Control is the action of an external agent. The arguments for LDT treat the computer 
as  a  close  system,  and  so  the  computer  as  a  whole  evolves  uncontrollably 
(spontaneously). We can speak of control here only with respect to a sub-system of 
the computer, such as a memory cell, in which case the controlling external agent is 
another sub-system of the computer.
8 Figure 1.1 is essentially similar to Landauer (1971) p. 49  and Landauer (1992) p. 2.
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INSERT FIGURE 3 ABOUT HERE.

Landauer's Dissipation Thesis is based on preferring the latter option, that is, on 
the idea  that  the  accessible  phase  space  region is  a  disjoint  union of  the  phase  regions 
corresponding  to  macrostates  1 and  0,  with  some  probability  distribution  (typically 
uniform) over them. The justification normally given for this choice is the following. "In 
most instances a computer pushes information around in a manner that is independent of 
the  exact  data  which are  being  handled,  and is  only  a  function of  the  physical  circuit 
connections."9 In other words, logical gates do not contain measuring elements, and carry 
out their computation regardless of the macrostate of the input cells. (This idea is further 
discussed in section 10.1 below.) A modelling of computation must allow for this mode of 
operation: it must not involve measuring the actual memory macrostates. Figure 3 seems to 
go against this idea, for it represents a situation where the actual macrostate is given and can 
be used as the basis of computation. 

It is normally taken for granted that the phase space representation of a memory is 
as in Figure 1.1. In section 9 I show that this representation is fraught with difficulties, and 
argue that the Figure 3 type of representation has some significant advantages. However 
preferring the Figure 3 type of representation over Figure 1.1 involves a rejection of LDT, 
since the Figure 1.1 type of phase space representation is crucial for LDT, as I presently  
show.

4. The Main Argument for LDT

Logical  operations map  M n-tuples of bits to  N n-tuples of bits.  In logically reversible 
operations  (1:1),  M=N.  Example:  in  the  function called  Not,  NOT(1)=0,  NOT(0)=1, 
n=1,  M=2,  N=2. In logically  irreversible operations (not 1:1),  M>N.  Examples:  in the 
function called Erasure, ER(1)= ER(0)= 0, we have n=1, M=2, N=1; in the function called 
Or,  where  the  first  bit  stores  the  output  and the  second remains  unchanged,  which is 
OR(<0,0>)= <0,0>, OR(<1,0>)= <1,0>, and OR(<0,1>)= OR(<1,1>)= <1,1>, we have 
n=2, M=4, N=3. Discussions of LDT often focus on erasure for its simplicity.

Note, in passing, that there are two ways to  erase information. One is by way of 
destruction, e.g., pulling out the electrical plug, or blowing up the whole computer. The 
other is by way of a logical operation: ER(1)= ER(0)= 0. LDT is about the logical operation 
type of erasure, not about destruction. Actually, LDT is not specifically about erasure at 
all, but about logical irreversibility in general. Note also that there is no counterpart for the 
destruction type of erasure in other logically irreversible operations. 

9 Landauer (1961), p. 184.
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Consider, for simplicity, the case where the memory states 1 and 0 both have phase 
space volumes V=1.10,  11 Given that the accessible phase space region is the disjoint union 
of macrostates 1 and 0 (as in Figures 1.1 and 2.1), the phase space volume accessible for a 
memory cell seems to  decrease when logically irreversible operations are performed. The 
volume MV is mapped to NV, for M>N (see Figures 1.2 and 2.2). 

At this point in the argument for LDT one turns to Liouville's theorem,12 which 
entails that in a closed conservative system the accessible phase space volume cannot be 
compressed. The seeming reduction in phase space volume in the transformation 1.11.2 
or  2.12.2 must,  therefore,  be compensated by an expansion in some other  degrees  of 
freedom, which do not  carry  the  information.  Thus,  instead of  1.11.2 we must  have 
1.11.3  directly,  and  instead  of  2.12.2  we  must  have  2.12.3,  again:  directly.  The 
intermediate stage in both cases, Figures 1.2 and 2.2, never actually occurs, for it violates 
Liouville's  theorem. Stages 1.2 and 2.2 are presented for explanatory purposes only.  In 
actuality, says the LDT, stages 1.1 and 2.1  are transformed to stages 1.3 and 2.3 directly. 

At this point the main argument for LDT almost ends. Its last point (expressed in 
the last sentence from Landauer in section 1 above) is subtle (and rarely mentioned), and 
will be discussed below (section 6).

So far, the word dissipation has not yet been mentioned.

5. Entropy
Nobody knows what entropy really is. 
J. von Neumann13

Dissipation, which is the degradation of energy from useful to useless forms, is quantified 
by the increase of entropy. Thermodynamics focuses on entropy differences,  which are 
functions of state functions. For instance, the entropy difference between two equilibrium 
states  A and  B  of an ideal  gas is  given by  S=CVlog(TA/TB)+Rlog(VA/VB), where  CV is 
thermal capacity for constant volume,  T is  temperature,  R is  the gas constant and  V is 
volume. One central aim of statistical mechanics is to recover thermodynamic laws like this 

10 The term  volume here is not very precise. A more precise treatment involves the 
choice  of  measure.  But  an  intuitive  understanding of  multidemensional  Euclidean 
volume will suffice for the present discussion. 
11 The binary case, volume(0)=volume(1)=V, can be generalized to n-ary states, e.g., 
the ternary case discussed in some versions of Maxwell's Demon, like Bennett (1982, 
1987).  The  simplicity  assumption  of  equal  volumes  is  not  trivial,  for  assigning 
different volumes to different memory states has significant implications with respect 
to LDT, as shown by Fahn (1996). But the simple case is enough to reveal the main 
difficulties.
12 For a proof and discussion of this theorem see, for example, Tolman (1938) Ch. 3 
and Lanczos (1970) Ch. 6.
13 Quoted by Tribus and McIrvine (1971) p. 180.
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from the laws of dynamics acting on molecules, possibly with some additional postulates 
regarding the  possible  initial  states  of  the  system and the  probability  distribution over 
them.14 There are two main schools in main stream statistical mechanics which differ on 
how to do this. They are named after their founders, Gibbs and Boltzmann.15 Crudely, 
Boltzmann  accounts  for  the  properties  of  an  individual  system  by  reference  to  its 
macrostate, while Gibbs accounts for them using the notion of ensemble. One consequence 
of  these  fundamental  conceptual  differences  is  that  the  magnitude  called  entropy has 
different meanings and different values in the two appraoches.

5.1. Gibbsian dissipation and LDT

In  Gibbs's  approach,  canonical  fine-grained  entropy  (for  systems  with  constant 
temperature) is -k(X)ln(X)dX, where   is the probability distribution function and X 
stands for all the degrees of freedom and the integration is taken over all phase space. For a 
microcanonical ensemble (representing isolated systems), fine grained entropy is  klnV(a.r.) 

where V(a.r.) is the volume of the accessible region. By Liouville's theorem both expressions 
are constant in time. Hence no dissipation, in the sense of an increase in Gibbsian fine 
grained entropy, can ever take place. (The method of coarse graining is discussed below.)

Consider Figure 1,  which depicts the phase space of the whole computer.  This 
system is subject to Liouville's theorem. That is a central assumption in the argument for 
LDT,  as  we have  seen above  (section  4),  for  it  is  Liouville's  theorem that  dictates  the 
constancy of phase volume, forbidding Figure 1.1 to be transformed to 1.2 and dictating its 
direct transformation to 1.3. Since the phase volumes of 1.1 and 1.3 are equal throughout 
the transformation (with uniform probability distribution inside and zero outside), their 
Gibbs microcanonical  (as  well  as  canonical)  entropies  in them are equal  .  No Gibbsian 
dissipation takes place at the transformation from 1.1 to 1.3.  Hence, the dissipation that 
Landauer's  Thesis  proclaims cannot be of  this sort.  Let  us  proceed to search for  other 
notions of dissipation.

The fact that Gibbsian entropy is conserved by Liouville's themorem, and that this 
precludes a recovery of the Second Law of thermodynamics,  was known to Gibbs.  To 
account for changes of entropy, as described by the Second Law, he proposed the idea of 
coarse graining. This idea is problematic, and collapses entirely in the case of the spin echo 
experiments.16 But even if one tends to accept it, the idea is not applicable for the LDT 
case, for the following reason. A change of entropy due to coarse graining occurs when we 
start out in a non-equilibrium state, in which the probability distribution is non-zero in 
one part of the accessible region and zero in another. (Such a state can be brought about 

14 Of course, one then has to justify these postulates, a very non-trivial business. I do 
not address these difficulties here.
15 For the two approaches and the differences between them see, for example, Gibbs 
(1902),  Ehrenfest  (1912),  Tolman  (1938),  Jaynes  (1965),  Lebowitz  (1993),  Sklar 
(1993), and Callender (1999). 
16 see Ridderbos and Redhead (1998).



Shenker: Logic and Entropy  10

by, for example, a sudden increase of volume.) In such a case the non-zero part of the 
probability distribution is claimed to evolves such that it fills up the whole accessible region 
in the fibrillated way that Gibbs compares to mixing two colours. Our case is not like that.  
Probability is (generally) equally distributed between the  1 and  0 parts of the accessible 
region,  and  a  uniform  distribution  persists  when  Figure  1.1  evolves  to  1.3  (directly). 
Therefore, dissipation in the sense of coarse graind Gibbsian entropy never takes place.

LDT  turns  out  to  be  patently  false  in  the  Gibbsian  framework.  Whence  the 
prevalent error? I return to this interesting question later.

5.2. Boltzmannian dissipation and LDT

In Boltzmann's approach, entropy is  klnV(mac) where V(mac) is the phase space volume of a 
macrostate. Here, entropy can change spontaneously, when the system evolves from one 
macrostate  to  another.  (The problem,  not  addressed here,  is  to  prove  that  it  normally 
evolves in accordance with the Second Law.) Whereas Gibbs's entropy is determined by the 
volume  of  the  accessible  region,  and  hence  this  volume  must  be  carefully  identified, 
Boltzmann's  entropy  is  determined  by  the  volume  of  the  macrostate,  and  so  the 
macrostates have to be carefully identified. Above (section 3.1) I presented considerations 
to the effect that the memory states 1 and 0 are the natural macrostates of a memory cell: 
distinction between them is sufficient for manipulating bits, and is also a minimum for 
this. 

Since this is an important point, a possible objection ought to be addressed. In the 
computers  we  currently  use  individual  memory  cells  are  certainly  inaccessible  for  the 
normal user at any practical level. In what sense, then, are the 1s and 0s, or arrays of them, 
distinguishable  macrostates?  The  input  and  output  of  a  computer  that  performs  an 
algorithm are very well defined arrays of bits. A flip of a bit may change the input and 
output in a way that is very significant at the pragmatic level. Therefore the user must be 
able to distinguish 1 from 0 at both ends. It makes no difference whether the distinction 
can be directly perceived with naked human senses or using complex and theory-dependent 
devices. The use of automated error correction processes should make no difference either. 
The point here is only the very distinguishability: if and only if  1 and  0 can  somehow be 
distinguished, they are different macrostates. And if they are distinguishable at the input 
stage there is no reason why they should cease to be so during computation (but see section 
10.1 below).  And  so,  prior  to  the  erasure  (Figure  1)  the  Boltzmann  entropy  is  either 
klnV(0) or  klnV(1),  and after the erasure it  is klnV(0).  In the simplest or extreme case 
V(0)=V(1), and the entropy difference is null. (Since we are in search of minima, focusing 
on extreme cases is desirable.) In other words, entropy is the same before and after erasure.  
No Boltzmannian dissipation takes place.

Once again, the LDT turns out to be plainly false. And once again, the interesting 
question is about the source of the prevalent error. 

6. Diffusion and Dissipation in LDT
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Since  -  by  the  above  results  -  no  Gibbsian  fine  or  coarse  grained  dissipation,  and  no 
Boltzmannian  dissipation,  necessarily  occurs  in  logically  irreversible  operations  (like 
erasure), it is important to discover what is dissipation in LDT.

In thermodynamics,  dissipation means  degradation in the exploitability of energy, 
as in Joule's famous experiment, where gravitational potential energy is transformed into 
heat  energy.  None of  this  necessarily  happens  in the case  of  logical  irreversibility.  The 
energy stored in the non-information bearing degrees of freedom may have a form that is 
valuable and exploitable from a thermodynamic point of view. Indeed, Landauer (1992, p. 
2) notes that the dissipation is  not identical with the expansion into the non-information 
bearing degrees of freedom. It does not occur at the transformation from Figure 1.1 to 1.3, 
but at a later stage. At that later stage, after 1.3, the top and bottom regions of 1.3 "diffuse 
into each other" (see quote at the introduction). What does this diffution mean, and how is 
it associated with disspation?

Since the top and bottom regions in Figure 1.3 are inter-accessible (unlike the two 
regions in 1.1),  the uncontrollability postulate entails  that the system may (and usually 
does)  lose  memory  of  its  initial  state.  The  top  and  bottom  regions  at  1.3  may  be 
distinguishable macrostates, that is, we may know where the system is at each given time 
along the non-information bearing degrees of freedom. But since they are uncontrollably 
inter-accessible, we cannot deduce, from where the system  is sometime after the erasure, 
anything about where it has been right after the erasure, and hence we can also not deduce 
its pre-erasure macrostate. In this sense, the information about the input, pre-erasure state, 
is irrecoverably lost. It is lost not during the transformation from 1.1 to 1.3, but later, as an 
outcome of the interaccessibility in the vertical direction. (We could make the top and 
bottom regions of 1.3 non-inter accessible, as in 1.1, but then we would not have had real  
and complete memory erasure.)

So we indeed have a well defined and very useful notion of diffusion, as Landauer 
suggests.

But does this diffustion mean, or entail,  dissipation? As before, let us examine the 
different  notions  of  dissipation  that  appear  in  main  stream  statistical  mechanics.  The 
Gibbsian  fine  grained  microcanonical  entropy  klnV(a.r.) does  not  change  during  the 
diffusion,  because  the  diffusion occurs  within unchanging boundaries  of  the  accessible 
region. The fine grained canonical entropy -k(X)(X)dX doesn't change either, since the 
probability distribution remains uniform throughout the process. Gibbs's coarse grained 
entropy doesn't  change,  too,  since the distribution is  spread out all  over  the accessible 
region, already at the beginning of the diffusion stage. And so the diffusion does not mean 
nor entail a Gibbsian dissipation.  LDT fails here.

The Boltzmann entropy depends on the new macrostates. Suppose, for simplicity, 
that the top and bottom regions of 1.3 are macroscopically distinguishable and have equal 
phase  volumes.  In  this  case  the  Boltzmann  entropy  is  constant:  klnV(0)  =  klnV(1)  = 
klnV(top) = klnV(bottom). (Again, the volumes could be different, but we are looking for 
minima, and so must focus on extreme cases.) The result: although macroscopic memory is 
lost (for the macroscopic distinction between top and bottom tells us nothing about the system's 
history), entropy is (or can be) conserved. And so the diffusion of top and bottom does not 
entail a Boltzmann dissipation. LDT fails here, too.
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7. Alternative Arguments for LDT

Landauer’s  Dissipation Thesis  has  other  arguments  for  it,  but  they  all  suffer  from the 
similar sort of fundamental problems, that make them unacceptable. In one of them, the 
focus on a single memory cell is replaced by focusing on an array of  N memories. In the 
case of erasure, instead of the two regions, of 0 and 1, being mapped into region 0, one  
speaks of 2N N-bits arrays mapped into an array of all 0. The above problems remain.

A second argument is that Figure 1 resembles an isothermal compression of a gas, 
such as the transformation 4.1a4.2a in Figure 4.17 This argument is very confused, and 
the  notion  of  resemblance  that  it  uses  is  unclear.  Let  us  first  examine  resemblance  in 
appearance and then resemblance in function. 

The prima facie similarity between Figures 1 (parts 1.1, 1.2 and 1.3) and 4 (parts 
4.1a, 4.2a and 4.3, respectively) is very misleading. They are significantly  dissimilar, and 
once we try to make them similar, dissipation disappears. Let us see how. Consider Figure 
4.1a and compare it to 1.1. The analogy of appearance seems to be between individual gas 
molecules and their trajectories in bounded physical space, and individual phase points and 
the trajectories  starting from them in the accessible  phase  space  region.  The two cases 
differ, however, with respect to inter-accessiblity of macrostates: regions 1 and 0 in Figure 
1.1 are non-inter accessible, whereas in 4.1a all states are uncontrollably interaccessible. So 
the structure of the phase space is significantly different from the structure of the physical 
space; there is no similarity of appearance, and so no ground for an analogy based on such 
an appearance. 

INSERT FIGURE 4 ABOUT HERE.

To make the two cases appear similar we need to insert a partition in the container. 
Let us do this (replacing 4.1a by 4.1b). Now, however, with the partition, we can no longer 
perform the compression to 4.2a.  Stage 4.2a becomes inaccessible from 4.1b,  in (a very 
imperfect and perhaps misleading) analogy to the inaccessibility of 1.2 from 1.1. 

Let us try another resemblance of appearance. Since the transformation 1.11.2 is 
forbidden (by Liouville's theorem) and what actually happens (by LDT) is 1.11.3, we 
need to focus  on the seemingly-analogous transformation 4.1a4.3 (or  even 4.1b4.3). 
This transformation is, however, a paradigmatic case of a dissipationless process. 

Another  aspect  of  the  dissimilarity  between Figures  1  and 4  takes  us  from the 
analogy by  similarity of form to  similarity of function. The macrostate of the gas in the 
container at stage 4.1 stores no information, with or without a partition. If we want it to 
store at least one bit we must first compress the gas into one chamber, as in 4.2a, and then 
keep it  there  with a  partition,  4.2b.  And so it  turns  out  that,  from the perspective  of 
functioning as a memory, the analogy ought to be between 1.1 and 4.2b (not 1.1 and 4.1). 
Now, if 4.2b is the pre-erasure state, which is the erased state? The transformation 4.2b4.1 
(or,  equally,  4.2b4.3)  is  a  process  of  erasure  by  destruction,  not  a  case  of  the  logical 

17 This analogy is mentioned in the quote from Landauer, at the opening of this paper
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operation ER(0)=E(1)=0 (for the notion of destruction see section 4 above). To perform 
the logical operation we need to follow this destruction by compression into the chamber 
called 0. This is an erausre by thermalization. Nothing, however, in the general scheme of 
Figure 1 dictates or entails that this is the only method of erasure.18 An alternative process 
on erasure, not involving thermalization, is discussed in section 8 below.

Let's sum up the argument by analogy from Figure 4 type of processes. Figures 4 
and 1 are  dissimilar in form,  due to the inter-accessibility of the macrostates regions in 
Figure  1.1d.  Restoring  similarity  by  inserting  a  partition  (4.1b)  makes  the  process 
(4.1b4.2a) impossible; restoring similarity by transforming 4.1a directly to 4.3 makes the 
process dissipationless. Figures 4 and 1 are also dissimilar in function, for the state in 4.1 
stores no information. Restoring similarity here destroys the similarity of form: in form, 
1.1 resembles 4.1; in function, it resembles 4.2. And even then, the gas container turns out 
not to be the most general case of erasure, for it requires a not-generally-necessary stage of 
thermalization (see Section 8).

A third alternative argument for LDT is by analogy to (the reverse of) cooling by 
adiabatic demagnetization.19 This argument suffers from problems similar to those of the 
previous example. In particular, (to take a semi-classical view of this quantum mechanical 
phenomenon) in the stage analogous to pre-erasure, the spins system has no memory (just 
like  the  gas  in  4.1).  This  uncontrollable  inter-accessibility  is  essential for  the  cooling 
process.20 If  we destroy the interaccessibility,  the system ceases to cool.  Again, once we 
make the systems analogous in either appearance or function, dissipation dissappears.21

8. A Counter Example for LDT

Before proceeding to propose an alternative, let us support the conclusion regarding the 
failure of LDT by a counter example. Consider the memory cell in Figure 5. Its contents is 
determined by whether the notch marked R or the one marked L in the key shaped board 
rests on the peg. This memory stores the outcome of measuring the position of a particle in 
a container: right or left. The symbol  ? indicates the  ready state. The symbols  R, L, ? are 
reminiscent of the original context in which this device originally appeared (see below) and 
can be thought of as 1, 0 and ready. To erase, lift the key using gear A, then turn gear B in 
the indicated direction. The structure of the grooves will ensure that the key will stop with 
the  ? notch facing the peg, regardless of the initial state. Then Lower the key back using 

18 Incindentally,  this process requires a measurement in order to pull  the partition 
quasi statically in the right direction. But see section 10.1 below.
19 This analogy is mentioned in the quote from Landauer, at the opening of this paper.
20 To see that it is enough to consider a simplified semi-classical description of the 
adiabatic demagnetization method of cooling, such as in Reif (1981) pp. 445-451.
21 Other  arguments,  not  discussed here,  are  formally  more  complex,  but  on close 
examination subject to similar objections. E.g., Shizume (1995) and Lubkin (1987). 
They are discussed in Shenker (1997).
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gear  A. The information (R or  L) is thereby erased, and the only source of dissipation is 
friction, which has no minimum (see Krim 1996).22 

INSERT FIGURE 5 ABOUT HERE.

This device is based on one by  Bennett (1987, p. 94). Bennett proposed it as a 
counter example for the claim that  measurement is dissipative. The original context is a 
discussion of Maxwell’s Demon (see section 11 below), but Bennett's counter example has 
implications for the physics of information which are quite general, and therefore it can 
and should be  considered in  its  own right,  regardless  of  its  original  context.  Bennett's 
construct is a measuring device that determines which of two chambers contains a particle, 
and stores the information in a memory (the key with notch and peg). The device is a clever 
combination of gears, in which the only possible source of dissipation is friction. Bennett 
rightly concludes that this device shows that measurement cannot be associated with any 
minimum amount of dissipation.23 This conclusion is based – as it should - on the details 
of  the  counter  example,  regardless  of  any  general  or  abstract  argument  that  might  be 
offered regarding the entropy of measurement.24

If we add the Figure 5 device to Bennett’s apparatus, the stored information can be 
erased, in a process where, again, friction is the only possible source of dissipation. From a 
logical point of view, the conclusions ought to be the same, namely, that the device shows 

22 The key acquires momentum, which indicates the original information stored in the 
memory. (Chris Moore and Michael Lachman raised this objection.) The key can be 
stopped using friction, which can be made as small as we want, in particular, smaller 
than kln2, by turning gear B very slowly. 
23 Earman and Norton (1999, pp. 13-14 and 16) find the following flaw in Bennett's 
device, when this device is used as part of Maxwell's Demon. The keel shaped object  
with  the  two  pistons  that  is  lowered  onto  the  chambers  is  subject  to  thermal 
fluctuations, they say, for it must have very little mass, to allow for a quasi-static 
compression against  the  particle's  pressure.  If,  however,  we disassociate  Bennett's 
apparatus from Maxwell's Demon, we are not obliged to insert a light and fluctuating 
gas particle into the chamber. We can measure something else instead, for instance: 
determine which chamber contains a heavy rock. The dissipation associated with the 
piston's collision can be made as small as we like, provided the rock is very rigid 
relative to the piston's  weight  so that  the collision is  elastic,  and that  the piston's 
weight is not small enough to make it subject to thermal fluctuations, and that the 
piston's velocity is very close to zero at the time of collision. 
24 The usual argument supporting entropy of measurement is this. "The Second Law 
of Thermodynamics forbids a net gain of information. Yet a measurement 'provides 
information'. Measurement itself thus becomes paradoxical, until one reflects that the 
gain in information about the system of interest might be offset by a gain in entropy of 
some 'garbage can'. Indeed, it must be so offset to save the bookkeeping of the Second 
Law."  Lubkin (1987),  p.  523.  This  argument  is  confused;  I  discuss  it  in  Shenker 
(1997).
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that  erasure cannot  be  associated  with  any  minimum  amount  of  dissipation.  To  a 
comment in the same spirit, by Parke (1988), Bennett (1988) replied that the erasure is 
nevertheless dissipative, just because it maps two memory states into one (by the above main 
argument for the LDT). This, however, is a reply to a counter example by reference to the 
universal claim being challenged. One ought, instead, to study the details of the counter 
example.

It is sometimes maintained that the erasure carried out by the Figure 5 device is not 
a  complete  one.  For  since  the  particle  is  still  in  its  original  chamber,  the  information 
regarding its position can be recovered. To obtain a complete and irreversible operation, it 
is claimed, we ought to erase also the information stored in the measured position itself. 
This  amounts  to  the  problematic  claim  that  the  state  of  a  system  is  also  storage  of 
information  regarding  that  system  and  that  state.  This  claim  involves  a  very  general 
question about the meaning of measurement and information storage. I shall not address it 
here.  Instead,  I  shall  add  an  element  to  the  Figure  5  device  that  will  answer  the  said 
objection. 

The idea here is simple, while its graphic illustration is cumbersome; I therefore 
describe it  without an accompanying figure.  Our attention is  focused on the following 
elements:  the  key,  which  stores  the  original  position;  the  particle,  which  is  in  the  full 
chamber of the container, the other half being empty; and the two pistons at the right and 
left hand sides of the container. At the initial state the key still stores the which-chamber 
information. In the first stept of the erasure, a set of gears couples the side pistons to the 
key’s  position,  so that  the piston at  the empty side is  pushed in against  vacuum. This 
involves no dissipation, apart from friction. Second, the (very thin) partition is pulled out. 
This involves no dissipation since the inserted piston replaces the partition. Third, the two 
side-pistons are shifted together, keeping their mutual distance constant, until the center of 
the full chamber is positioned where the partition has originally been. Then, the walls of 
the empty chamber are folded out or taken apart, with the result that the appearance of the 
container is symmetric and gives no indication whether the particle has originally been at 
the right or the left  hand side chamber.  This completes the erasure of the information 
stored in the particle's state. Next, we turn to erase the information stored in the key, as  
explained above and in Figure 5. By the end of this stage the information is erased and 
irretrievable. This does not close an operation cycle,  for the particle's container doesn't 
have its  original  form.  However,  LDT is  not  about  operation cycles  but  about  logical 
irreversibility.

If Bennett’s device shows that measurement is not necessarily dissipative,  then it 
also shows that erasure is not necessarily dissipative.

9. Reexamination of the Phase Space Representation of Memory 
Cells

So far  we have seen that  LDT fails  because,  given the  phase  space  representation of  a 
memory cell which is uses (Figures 1 and 2), erasure does not involve any necessary change 
of entropy (as this term is understood in main stream statistical mechanics). I now turn to 
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show that problems start already in the preparatory stage of the argument for LDT. The 
phase space representation of a memory cell on which it relies is problematic. 

In classical  statistical  mechanics probability distributions appear in two sorts  of 
expressions. One is a family of  phase averages  which correspond to directly measureable 
thermodynamic properties of individual systems, like pressure and temperature. (Why do 
averages correspond to the properties of individual systems? This is an open question.25 I 
don't address all its aspects here, but it will play an important role in our considerations 
below.)  Another  family  of  expressions,  in  which  probability  distributions  appear, 
characterizes these distributions themselves. Some members of this family are called entropy 
(like  the  ones  we  have  seen  in  section  5 above).  Entropy  is  a  property  of  a  probabilty 
distribution, regardless of the subject matter over which the probability is distributed. (See 
below a discussion of thermodynamic entropy.)

The importance of the distinction between the two types of expressions in which 
probability appears cannot be overemphasised. In phase averages which are supposed to 
stand for the directly measureable thermodynamic quantities, the nature of that space is of 
major importance. For it is (for instance) the fact that we are dealing with (generalized) 
positions and mementa which makes our discussion part of statistical  mechanics,  rather 
than an abstract exercise in probability. In expressions for entropy, on the other hand, all 
that matters is the probability distribution itself, and there is no role whatsoever to the 
nature of the space over which the probability is distributed. For this reason the notion of 
entropy  can  be  generalized  and  abstracted,  as  is  done  (for  instance)  in  Shannon's 
communication theory and elsewhere. Such an abstraction is possible and legitimate only 
as long as the nature of the space, over which the probability is distributed, is immaterial. 

Of course, entropy originates in classical thermodynamics. Notice, however, that 
thermodynamics discusses entropy changes, and that these changes are functions of the 
changes in the directly measureable quantities (entropy change is not a directly measureable 
quantity). The reason of this nature of thermodynamic entropy is this. Thermodynamic 
entropy describes the way that the directly measureable quantities change, and this way of 
changing  is  common  to  them  all.  It  is  common  to  all  of  them  because the  directly 
measureable  quantities  are  averages,  calculated  using  the  probability  distribution,  that 
entropy characterizes.26 If the distribution changes, all the quantities based on it change in a 
similar way.

Let us apply these considerations for LDT. As long as we focus our attention on 
entropy only, it is hard to see that anything is wrong with phase space representations like 
Figure 1.1. It can easily be interpreted as expressing ignorance with respect to the initial 
macrostate of the memory cell. (See, however, the problem with input data, section  5.2 
above.) But since LDT is an argument about dissipation of  energy, it is an argument in 

25 For an overview of the attempts to answer it see Sklar (1993). 
26 The word  because here is problematic. As things stand now, thermodynamics is 
certainly not reducible to the underlying mechanics, in any sense of reduction. See 
surveys of this problem in Sklar (1993) and Guttmann (1999). Albert (1994) is an 
attempt to make such a reduction; this attempt is discussed in Hemmo and Shenker 
(2000). 
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statistical mechanics. It needs to account for the fact that the probability is distributed over 
phase  space of  position and momentum, and not over  just  any abstact  space of  logical 
possibilities. We ought to demand that the probability distribution used in LDT will work 
properly when we want to calcualte phase averages meant to stand for directly measureable 
thermodynamic  properties  of  individual  systesm.  And here  we  face  one  of  the  central 
difficulties at the foundations of statistical mechanics, for which we need to make a brief 
digression.

One problem at the foundations of (Gibbsian) statistical mechanics is  to justify 
why phase  averages  correspond to  thermodynamic  magnitudes  pertaining  to  individual 
systems. A closely related question (in the Boltzmannian framework) is, why does the phase 
volume  of  a  macrostate  correspond  to  the  probability  of  finding  the  system  in  that 
macrostate. (The questions are why and not whether, for the recipes of statistical mechanics 
are clearly successful in the appropriate circumstances.) Many have come to recognize that 
ergodicity  cannot  be  the  key  for  soveing  this  problem.  Ergodicity  is  not  necessary  for 
explaining the success of statistical mechanics since many interesting and relevant systems 
are not ergodic. And it is not sufficient either since, for example, ergodicity is about infinite 
time averages while we are interested in finite relaxation times.27 No sufficiently fault free 
alternative is currently available, and the justification for using probability distributions in 
predicting the behavior of individual systems is still an open question.28

Still,  one  basic  intuition  behind  the  ergodic  approach  seems  to  underlie  every 
objectivist attempt to justify the use of probability distributions to predict the behavior of 
individual  systems.  This  intuition appears  to  be  indispensable,  and it  is  the  following. 
Consider some phase function f that corresponds to the thermodynamic magnitude F of 
system S. And consider a region R in the phase space of S, which has a non-zero weight in 
calculating f. By assigning R a non-zero weight we seem to claim that the states in R are not 
altogether irrelevant for the dynamics of S. In other words, we seem to claim that it is not 
completely out of the question that S will, at some point of time, assume a state belonging to 
that region.29

27 For problems in the ergodic approach see, e.g., Earman and Redei (1996), Sklar 
(1973), and Guttmann (1999).
28 A  possibly  path  breaking  proposal  here,  based  on  quantum  mechanical 
considerations,  is  Albert  (1994).  See discussion and an alternative in Hemmo and 
Shenker  (2000).  An  alternative  direction  is  interventionism  or  the  open  systems 
approach; see Bergmann and Lebowitz (1955), Blatt (1959), Sklar (1993), Ridderbos 
and Redhead (1998), Shenker (2000), Hemmo and Shenker (2000). 
29 As long as we deal with essentially isolated systems, this may lead to something 
like the requirement of indecomposability, which can mean back to ergodicity with its 
problems. An attempt to avoid this outcome may lead to the open systems approach or 
to postulating inderterministic  underlying dynamics (see footnote  Error:  Reference
source not found). I shall not address this problem here, for the present purpose is not 
to solve the difficulties at  the foundations of statistical mechanics,  but to point at 
problems in LDT. 
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Consider, now, Figure 1.1. A memory cell that - possibly unknown to us - started 
out in macrostate 0, will never be in macrostate 1. For such a memory cell, macrostate 1 is 
completely out of the question. And vice versa, of course, for a memory that started out in 
macrostate 1. Suppose, now, that regions 1 and 0 in Figure 1.1 differ in their microstates in 
such a way that the phase average corresponding to, say, pressure in region 0 is P0 and the 
phase  average  corresponding  to  pressure  in  region  1 is  P1.  Because  of  the  non-inter-
accessibility of regions 1 and 0, the real pressure of the system at any given point of time t 
(that is, pressure as a directly measureable property of an individual system) will be either P0 

or  P1.  It  will  not be  (P0+P1)/2.  The magnitude (P0+P1)/2  does  not  correspond to  any 
directly or indirectly measureable physical property of the system described in Figure 1.1, at 
any point of time. To generalize: a phase average in which regions 1 and 0 both have a non-
zero probability does not correspond to any physical-thermodynamic magnitude.

There is one notable exception, of course: a phase average in which regions 1 and 0 
both have a non-zero probability can correspond to entropy. But this is a pathological case, 
in  which  we  can  speak  of  entropy  only  as  long  as  we  do  not  associate  it  with  the 
thermodynamic entropy.  To  emphasise  this  point  think  of  expressions  like 
S=CVlog(TA/TB)+Rlog(VA/VB),  the entropy difference in an ideal  gas.  Since  T and  V, 
being phase averages, are not well defined in cases like Figure 1.1,  S is not well defined 
either. Thus, magnitudes like -k(X)ln(X)dX, klnV(a.r.),  and  klnV(mac),  while being very 
interesting  characterizations  of  probability  distributions  in  general,  cannot  possibly 
represent the thermodynamic entropy in this case. 

What are the consequences for phase space representations like Figure 1.1? The aim 
of this representation, in the framework of LDT, is to learn something about dissipation of 
energy, about  thermodynamic dissipation. But, since phase averages over cases like Figure 
1.1 do not stand for thermodynamic-physical magnitudes, arguments based on Figure 1.1 
can  teach  us  absolutely  nothing  about  the  thermodynamics of  information processing. 
Figure  1.1  can  teach  us  a  lot  about  ignorance  and  probability,  but  not  about 
thermodynamics, energy, and heat.

What ought we to do if  we want to study the thermodynamics of information 
processing? Obviously, we must reexamine and change the phase space representation of 
memory cells. 

10. An Alternative Phase Space Representation

The above difficulties indicate that the model or phase space representation of Figure 1,  
which is the central pillar on which the LDT rests, is problematic. Figure 1 is based on two 
ideas, which together lead to the above difficulties. One: to ensure reliability of memory 
storage, the memory states ought to occupy disjoint phase space regions. I think this idea is 
correct. Two: The accessible region is a union of all logical possibilities at every stage of the 
computation. Here, I suggest, is the problem.

A possible alternative phase space representation is Figure 3, in which the accessible 
region at every point of time consists only of the region containing the actual macrostate of 
the memory cell at that point of time. It consists of either region 0 or region 1, never both. 
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Such a representation solves the above difficulties.30 It leads, however, to the conclusion 
that (ideally) computation – even logically  irreversible computation – is not necessarily 
associated with any minimum amount of dissipation; hence, to a rejection of LDT (above 
and beyond the considerations of sections  58 above). Let us now go over considerations 
that support Figure 3, and then turn to solve a difficulty that this representation  prima 
facie raises.

As said in section  5.2 above, for a computer to operate as such, on the intended 
input and with the intended algorithm, the user must be able to distinguish 1 from 0 at the 
input  stage  (whether  with  naked  human  senses  or  using  measuring  devices).  This 
determines that 1 and 0 are distinct macrostates.

For the same reason, in order to  feed in the right input, the user must be able to 
control whether the input state of a memory cell is 1 or 0. This - I now claim - determines 
that 1 and 0 belong to different accessible regions. That is, at each point of time the accessible 
region is either region 1 or region 0. The boundaries of the accessible region change with 
time during computation, such that it is never the case that both macrostaes belong to the 
accessible region. This idea is expressed by Figure 3. I now argue for this claim.

Recall what is the meaning of an accessible region: the boundaries of the accessible 
region express the extent of the control that external agents (like the user) can have on a 
system. By definition, the user can determine the boundaries of the accessible region, but 
cannot determined which  of  the  macrostates,  that  are  inside  this  accessible  region,  the 
system will assume. If a user's control appears to overstep the boundaries of the accessible 
region, that is, if the user seems to be able to determine which of the macrostates the system 
will assume, then this indicates that we are mistaken about the actual boundaries of the 
accessible region; they are narrower than we thought. We must redraw the boudaries of the 
accessible region, so that they will express the extent to which an external agent can control 
the system.

If we want the user to dictate the input state of a memory cell, this state must be 
determinable by manipulating the boudaries of the accessible region, without overstepping 
them. If both macrostates  1 and  0 belong the the accessible region at the same time, the 
user cannot dictate which of them the memory will assume. The user, acting as an external 
agent, can only determine the boundaries of the accessible region. And so, if we want the 
user to control the contents of the memory cell at the input stage, we must construct the 
computer such that the macrostates 1 and 0 will inhabit distinct accessible regions i.e., that 
they will be accessible one at a time, depending on the external constraints acting on them, 
that are controlled by the user. Only if 1 and 0 belong to distinct accessible regions can a 
user determine and control the contents of the memory at the input stage.

These consideratiosn support a phase space representation of the Figure 3 type, in 
which regions 1 and 0 are accessible one at a time.

30 It  does  not  fully  guarantee the  not  completely  out  of  the  question condition, 
however, for we still have to look into the dynamics of the system inside the disjoint  
regions. This is a major difficulty at the foundations of statistical mechanical and I do 
not address here. 
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10.1.A Difficulty and Its Solution

The Figure 3 type of phase space representation raises a difficulty when we move on from 
the input (and output) stage to the intermediate computation that takes place inside the 
computer. The computation is a series of physical interactions, in which the logical gates 
manipulate the states of memory cells. These interactions do not seem to include what we 
would nomally call a measurement, and in this respect it appears that "in most instances a 
computer pushes information around in a manner that is independent of the exact data 
which are  being handled,  and is  only a  function of  the physical  circuit  connections."31 

Figure 3 seems to disagree with this idea, for it may be interpreted as suggesting that the 
memory’s state is measured before the logical operation takes place. There is no ignorance 
regarding the cell's macrostate prior to the operation, but perfect knowledge.32 A possible 
solution for this difficulty requires an understanding of what measurement means here and 
of its thermodynamic significance. Two points are involved.

(i)  In  Classical  physics,  measurement is  coupling.  Interestingly,  classical  physics 
does not distinguish couplings that are measurements from other couplings, and the only 
criteria for such a distinction are pragmatic, pertaining to human interests. In this sense, 
measurement is not a natural kind from the point of view of classical physics. (Whether the 
quantum case is different or not is an open question.) The phase space representation of 
Figure 3 does not reflect knowledge by any user. It only reflects the idea that the logical gate 
acting on the memory cell is coupled to the cell in its input state and operates accordingly. 
The operation of  Bennett's  measuring  device  discussed in  section  8,  with  the  way the 
position of  the  particle  is  coupled to  the  memory cell,  is  an  example.33 Therefore,  the 
decision whether or not to call a certain coupling a measurement (or use it as such) cannot 
possibly have distinctive physical properties, such as a characteristic entropic behavior, that 
will distinguish it from other couplings. And therefore, whether or not we decide to call 
the  cell-gate  coupling  a measurement cannot  possibly  affect  the  entropy of  the  logical 
operation.

(ii) The conclusion of (i) is also one justification for concurring with the opinion 
that  classical  measurement  is  not necessarily  associated  with  any  minimum  amount  of 
dissipation.34 This opinion is supported by Bennett's (1987) thought experiment described 
in  section  8.  If,  however,  measurement  is  (ideally)  entropy  conserving,  it  ought  to  be 
entropically insignificant whether it takes place or not. In particular, whether or not the 

31 Landauer (1961), p. 184.
32 It is sometimes claimed that this knowledge has to be erased, otherwise the process 
is  not  logically  irreversible.  See,  for  instance,  the  discussion  of  Bennett's  though 
experiment  in  section  8 above,  and  the  distinction  made  there  between  logical 
reversibility and cyclic operations.
33 The details of the coupling mechanism were not described in Section 8, see Bennett 
(1987).
34 See footnote Error: Reference source not found for the claim that measurement is 
dissipative by kln2 per gained bit of information.
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state of a memory cell is measured before we carry out a logical operation needn't affect the 
entropic properties of that operation.

11. A Remark Concerning Maxwell’s Demon

Maxwell’s  Demon  is  often  taken  to  illustrate  the  import  of  LDT,  for  it  is  held  that 
dissipation in memory erasure is the key to solving the Demon conundrum (e.g., Bennett 
1982, 1987). It may therefore be instructive to show that the LDT, even if it were correct,35 

couldn’t have solved the Demon. This, for several reasons. 
One is,  that  the  meaning of  dissipation in  LDT is  not  connected to  the  usual 

notion used in thermodynamics and statistical mechanics, in any clear or straightforward 
way (see sections 5 and 6 above).

However, suppose that we somehow make a connection between the two notions 
of entropy. Then, the entropy balance of the Demon with the LDT is not different from 
the balance without the LDT. The dissipation, claimed in the LDT, compensates for the 
(alleged) reduction in phase space volume associated with discarding information; stage 3 
compensates for stage 2 in both Figures 1 and 2. The Landauer dissipation is intended to 
make sure that erasures (and other logically irreversible operations) do not turn out to be 
perpetual  motion  machines  in  their  own  right, above  and  beyond  Maxwell’s  Demon. 
Therefore, by the LDT, the net entropic effect of erasure is null, not positive. Erasure has 
no  spare  klog2  of  dissipation  that  could  be  used  to  compensate  for  the  Demon’s 
operations. This is clearly seen by comparing the phase volumes of stages 1 and 3 in Figures  
1 and 2. Therefore, whether or not erasure is dissipative is irrelevant for the Demon. 

Finally, Earman and Norton (1999) claim that a solution for the Demon based on 
the LDT is  circular  in  an unacceptable  way.  The Demon is  intended to be  a  counter 
example for the Second Law, and therefore this law must not be assumed in its solutions.  
They emphasize that the dissipation-in-erasure argument relies, crucially and indispensably, 
on the Second Law. The dissipation accompanying erasure is intended to compensate for 
the (alleged) reduction in phase volume, and such a compensation is only required if we 
assume that the Second Law is valid in the system. Normally, it is very reasonable to assume 
the  applicability  of  the  Second  Law;  this  assumption  is,  however,  unacceptable  when 
discussing Maxwell’s Demon. 36
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35 And even if supplemented by the idea of algorithmic complexity; see discussion in 
Earman and Norton (1999) pp. 17-20.
36 An alternative proposal for solving the Demon is given in Shenker (1999).
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