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Abstract

We reconsider the consequences of the observed violations of Bell’s in-

equalities. Two common responses to these violations are: (i) the rejection

of realism and the retention of locality, and (ii) the rejection of locality and

the retention of realism. Here we critique response (i). We argue that local-

ity contains an implicit form of realism, since in a world view that embraces

locality, spacetime, with its usual, fixed topology, has properties independent

of measurement. Hence we argue that response (i) is incomplete, in that its

rejection of realism is only partial.
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I. INTRODUCTION

It is a great pleasure to dedicate this paper to Prof. Daniel Greenberger on the occasion
of this Festschrift in his honor.

The proof of Bell’s theorem [1] is based on the two main assumptions of realism and
locality. Theories which satisfy these two assumptions are commonly called “local realistic
theories.”

Realism, roughly speaking, is the belief that there exists an objective world “out there”
independent of our observations. This is the world view of classical physics. In an extension
to quantum physics, this world view was expressed in the classic paper of Einstein, Podolsky
and Rosen (EPR), when they made the following statement [2]:

“If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity.”

In this formulation the authors have identified a class of situations for which, in their view,
it would be absurd to deny independent physical reality [3] to a property of the system.
This is not to say that there are no other “elements of physical reality” with definite (but
possibly unknown and unpredictable) values which do not depend on measurement. We
shall use the term elements of physical reality in this more general sense, reserving the term
EPR elements of physical reality for the specific features described in the quotation. Thus
in a realist’s world view, there exist physical quantities with objective properties, which are
independent of any acts of observation or measurement. For example, consider the case
of two spin 1/2 particles emitted in opposite directions from a common spin zero source
prepared in the Bohm singlet state [4],

|Stotal = 0〉 = 1√
2
{|Sz1 = +1/2〉 |Sz2 = −1/2〉 − |Sz1 = −1/2〉 |Sz2 = +1/2〉}. (1)

When a measurement of one particle, by a detector located at the end of one arm of the
experimental apparatus, yields a definite result of spin Sz = +1/2, then conservation of the
total spin angular momentum of the system necessarily requires that immediately upon this
measurement, the other particle must definitely possess a spin Sz = −1/2, and that this
result must be independent of whether or not any measurement is actually made on the
other particle. According to EPR, this implies that the other particle must actually possess
spin Sz = −1/2 as an EPR element of physical reality.

Locality is the other main assumption which goes into the proof of Bell’s theorem. the
The idea here is that what happens in a finite spacetime region A cannot be affected by what
is done (e.g., by the choice of settings of measuring devices) in a spatially well-separated
spacetime region B. In the context of special relativity, “spatially well-separated” means
that all points of A have spacelike separations from all points of B. Thus the locality prin-
ciple is usually assumed to be equivalent to relativistic causality, i.e., the nonexistence of
controllable superluminal signals. Combining the idea of realism with the locality principle
leads to a strong separability condition, i.e., the factorizability of joint probabilities of space-
like separated coincidence detections. This factorizability is the most important technical
ingredient in the proof of Bell’s theorem.
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Many experiments have shown that the Bell’s inequalities, which follow from Bell’s the-
orem, are violated (apart from technical caveats concerning detection loopholes, etc.), and
that the predictions of quantum theory, which also violate these inequalities, are confirmed.
These observations imply that some or all of the assumptions used in the proof of Bell’s
theorem are inconsistent with experiment. In addition to realism and locality, there are
auxiliary (but not necessarily independent) assumptions, which include absence of advanced
actions, contrafactual definiteness, etc. In accord with the usual practice in this discussion,
we shall accept the auxiliary assumptions and concentrate on realism and locality. With
this understanding the following alternatives exist:

(i) Reject realism and retain locality (the localist position).
(ii) Reject locality and retain realism (the realist position).
(iii) Reject both realism and locality (the nihilist position).

The nihilist position is the most difficult to analyze, since it contains no positive statement
of what is to be retained. Thus an application of Occam’s razor suggests that the localist
and realist options should be examined first.

II. THE LOCALIST POSITION

Here we would like to critique the localist position, which consists of two components.
The first is a denial of the existence of EPR elements of reality, and hence by implication,
of realism in general. The second is an affirmation of relativistic causality, as embodied in
special relativity and the standard notions of causality, and hence of the locality principle.
Einstein foresaw this position in his 1948 letter to Born as follows [5]:

“There seems to me no doubt that those physicists who regard the descriptive
methods of quantum mechanics as definitive in principle would react to this
[EPR] line of thought in the following way: they would drop the requirement
for the independent existence of the physical reality present in different parts of
space; they would be justified in pointing out that the quantum theory nowhere
makes explicit use of this requirement.”

In this quote, Einstein predicted that those physicists who believe that quantum theory is
fundamental would abandon (“drop”) realism (“the independent existence of the physical
reality present in different parts of space”). However, these same physicists would of course
not abandon special relativity, which has been so amply validated by experiment. Thus
Einstein presciently described the localist response to Bell’s theorem.

In his review article [6], “Is the moon there when nobody looks? Reality and the quantum
theory,” written after Bell’s discovery, Mermin described the situation as follows:

“Using a gedanken experiment invented by David Bohm, in which ‘properties one
cannot know anything about’ (the simultaneous values of the spin of a particle
along several distinct directions) are required to exist by the EPR line of rea-
soning, Bell showed (‘Bell’s theorem’) that the nonexistence [emphasis added] of
these properties is a direct consequence of the quantitative numerical predictions
of quantum theory.”
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This rejection of the kinds of realistic elements required by the EPR line of reasoning empha-
sizes, at least on the surface, the apparent impossibility of a realistic account of microscopic
phenomena. The combination of this anti-realistic line of reasoning with the evident impor-
tance of relativistic causality explains the strong attraction that the localist position holds
for many physicists.

We argue here that this position is incomplete in its rejection of realism, since the concept
of locality, as applied to EPR experiments, must implicitly carry within it a realist’s view
of space and time.

III. SPACETIME AS AN ELEMENT OF PHYSICAL REALITY

Implicitly in the localist’s world view, the spacetime manifold itself is an important
element of physical reality in the EPR experiments. In all currently successful physical
theories, e.g., the Standard Model of particle physics, spacetime is treated as if all its
properties are independent of observation or measurement; hence it is indeed an element
of physical reality in the general sense used here. In particular, the position of a photon
detector in an EPR experiment is treated as if it were a classical quantity whose value does
not depend on observations. Also, the time when a “click” goes off at this detector is a
definite, realistic quantity. Thus an event defined by a particle detector firing at a given
position and at a given time is assumed to be immune from any quantum back-actions, and is
therefore viewed as constituting an element of physical reality. (Here the small back-actions
of the detector on the particle [8] are neglected).

In special relativity, the metric of the spacetime through which a photon propagates is
strictly Minkowskian. Thus the Minkowskian (or flat) spacetime metric is also an element of
physical reality which is immune from quantum back-actions arising from any acts of mea-
surement. In particular, the causal light-cone structure of spacetime is a realistic concept
which is implicitly assumed in the proof of Bell’s theorem, in order to enforce the factoriz-
ability of the joint probability distribution of coincidence detections of EPR particles. This
factorizability expresses the strong separability of spacelike-separated measurements. Also
assumed is the absence of backwards-in-time causation (in other words, “advanced actions”),
i.e., the current values of the realistic variables do not depend on the values to be found in
any future measurement. Thus in the proof of Bell’s theorem, it is assumed from the start
that spacetime, as embodied in special relativity and the standard notions of causality, is
an element of physical reality.

The localist position, in which realism is abandoned for material systems, but implic-
itly retained for the properties of spacetime, is not logically inconsistent. Indeed it may be
viewed as a weaker version of the traditional Copenhagen interpretation in that spacetime
is required to be described by a classical realistic theory, but all physical objects, including
the measuring apparatus, would be described entirely by quantum theory. The real diffi-
culty with this view is physical. We already know from classical general relativity that the
spacetime manifold is itself dynamical. The question naturally arises: Should the spacetime
manifold itself be treated by the quantum theory? This question is usually discussed in the
context of quantizing the gravitational field, so that one would expect the EPR effects to
occur only on Planck length scales rather than on the macroscopic length scales involved in
EPR experiments. However, the correct answer may involve more radical, global alterations
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in the topology of spacetime (e.g., wormholes, strings, etc.) [7], which have manifestations on
macroscopic length scales. Thus the assumption of the standard fixed topology for space-
time used in both special and general relativity may no longer apply. Since quantum theory
is believed to be universally applicable, the position we take here is that if one quantizes
one part of system (matter), one should also in principle quantize the other part of system
(spacetime), even if this is very difficult to accomplish in practice.

The above approximations concerning the realistic nature of detector events and of the
flat spacetime inside which they occur, are of course extremely good ones, and therefore are
usually not explicitly stated. However, it is important to state them explicitly here, since
these approximations carry with them a realist’s world view of a very important part of the
entire physical system, namely, the spacetime inside which the apparatus resides. To sum
up: the localist position, in which realism is rejected for one part of the system, but retained
for another part, represents in principle an incomplete point of view.

IV. THE SUPERPOSITION PRINCIPLE IMPLIES SUPERLUMINAL

PHENOMENA

Quantum theory predicts, and experiments demonstrate, that certain counterintuitive
superluminal effects exist. These effects arise from the tension between the local nature
of all physical phenomena required by special relativity, and the global nature of super-
posed states required by quantum theory. However, these superluminal effects do not in
fact violate relativistic causality due to the acausal nature of the correlations imposed by
the superposition principle. The result is what Shimony has called “peaceful coexistence”
between relativity and the quantum theory [9].

There exists evidence for quantum superluminal effects other than EPR, namely, in
tunneling. Experiments have shown that individual photons penetrate a tunnel barrier
with an effective group velocity which is considerably greater than c [10]. The experiments
were conducted with a two-photon parametric down-conversion light source, which produced
correlated, but random, emissions of photon pairs. The two photons of a given pair were
emitted in slightly different directions so that one passed through a tunnel barrier, while the
other passed through vacuum. The time delay for the tunneling photon relative to its twin
was measured by adjusting the path length difference between the two photons in order to
achieve coincidence detection. The photon transit time through the barrier was found to
be smaller than the light transit time through an equal distance in the vacuum. However,
according to standard theory there is no violation of relativistic causality, since the front
velocity of the tunneling photon wave packet, which represents the speed at which an effect
is connected to its cause, is still exactly c [11].

Both the EPR and the tunnel effects represent examples of quantum superluminalities,
but of different kinds. Tunneling involves one-particle states, while the EPR correlations
involve many-particle states, so that the many-particle configuration space becomes im-
portant. The superposition principle of quantum theory is at the heart of both of these
superluminal phenomena. In the case of the EPR effect, the superposition in Eq. (1) leads
to an “entangled state,” i.e., a superposition of product states, which results in nonfactoriz-
able, i.e., nonseparable, joint probabilities, and thus superluminal correlations in coincidence
detection. This quantum nonseparability is in direct contradiction to the strong separability,
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i.e., factorizability, assumption of Bell’s theorem. In the case of the tunnel effect, super-
position gives rise to exponential decay and spatial independence of the phase of the wave
function inside the barrier. This leads to the superluminal behavior of the tunneling photon
wave packet [10,11].

V. WHAT IS TO BE DONE?

We have argued above that the rejection of realism in the localist position does not go far
enough, since general relativity implies that spacetime itself must be treated as a dynamical
quantum system. This argument seems to lead to a curious impasse, since denial of reality
for spacetime makes it difficult to formulate the notion of locality which is such an important
part of the localist position. Furthermore this approach seems to be perilously close to the
nihilist position. If the localist position is to be maintained, it would seem to be necessary
to formulate a notion of locality which does not require a realistic spacetime. Thus we may
have to abandon the usual, fixed topology of spacetime.

The realist position might offer an alternative in the form of an explicitly nonlocal theory
which ascribes objective properties to material systems and spacetime alike. This approach
has the obvious advantage that the existing notions of locality can still be formulated, but
it poses the equally obvious difficulty of constructing a nonlocal theory which does not
violate relativistic causality, at least in the approximation that spacetime fluctuations can
be neglected. In particular this theory should satisfy the principle of “peaceful coexistence”
with relativity, i.e., the explicitly superluminal (nonlocal) features of the theory should
not permit the sending of controllable superluminal signals. It is difficult to see how this
condition could be satisfied without taking the unpleasant step of postulating elements of
physical reality which are in principle unobservable. It is an open question whether further
development of the nonlocal, realistic quantum theory proposed by Bohm et al. [12] could
lead to a model satisfying these constraints.

At the present time there does not seem to be any decisive argument for choosing between
these alternatives.
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