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INTUITIONISM: AN INSPIRATION?

WIM VELDMAN

τοιγὰρ ἐγώ τοι, ξεῖνε, μάλ᾿ ἀτρεκέως ἀγορεύσω

Well then, let me you, stranger, precisely explain these matters
Od. α 214

1. Introduction

1.1. Topology and foundations. We want to introduce the reader to the in-
tuitionistic view of mathematics proposed, developed and defended by the Dutch
mathematician L.E.J. Brouwer (1881-1966)1.

Brouwer obtained his fame as a mathematician by a number of very important
results in topology such as the Dimension Theorem:

For all positive integers m,n,
if there is a homeomorphism from [0, 1]m to [0, 1]n, then m = n,

and the closely related Brouwer Fixed-point Theorem:

For each positive integer n, for every continuous function f from
[0, 1]n to [0, 1]n, there exists p in [0, 1]n such that f(p) = p.

These results were obtained in 1911.
Brouwer had started thinking on the foundations of mathematics earlier than

that. In his dissertation from 1907, see [9], he wrestled already with the concept of
the continuum. In a famous paper from 1908, see [10], he attacked the principle of
the excluded third X ∨ ¬X .

1.2. Against the formalists. In his inaugural lecture at the University of Ams-
terdam in 1912, entitled: ‘Intuitionism and Formalism’, see [11], Brouwer declares
himself an opponent of the formalists. The formalists, in Brouwer’s words, explain
the exactness and precision of the statements of mathematics by describing math-
ematics as a game with meaningless strings of symbols according to very strict and
precise rules. The game may turn out to be useful for certain purposes, and then
may give ‘a vague sensation of delight’, but these other purposes are not the con-
cern of the mathematician. In the formalist’s ‘game’, there is no place for truth,
only for correctness.

Brouwer most emphatically did not want to explain away the meaningfulness of
mathematical statements and the experience of truth. In his intuitionistic view, the
source of mathematical exactness is not to be found ‘on paper’ but ‘in the human
intellect’.

1.3. I. Kant. Brouwer was inspired by the philosopher I. Kant (1724-1804) who
described the simple theorem ‘7+5=12’ as the result of a construction in ‘pure
intuition’.

Pure intuition has to be distinguished from observation by the senses. In Kant’s
terms, it is the ‘form’ of all observations by the senses, and, as such, independent
of all individual observations by the senses, i.e. a priori.

1The title of the paper is taken from an exclamation by the philosopher L. Wittgenstein, see
[64].
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It is very important that one has to do something in order to come to the insight
of the truth of ‘7+5=12’: counting 1, 2, 3, . . . , 7 and then, continuing, putting 1
below 8, 2 below 9, 3 below 10, 4 below 11, and, finally, 5 below 12. This is why
Kant holds the mathematical judgment ‘7+5=12’ is not analytic, i.e. a matter of
logic, but synthetic, see [37, §2c], i.e., going beyond logic, and, one might perhaps
say, a product of some activity by the judging subject.

1.4. Languageless constructions. For the intuitionistic mathematician, every
mathematical theorem is, like ‘7+5=12’, the result of a construction in pure in-
tuition. The successful completion of this construction, the proof of the theorem,
gives joy and a sense of beauty, and one wants to tell one’s friends.

A construction in pure intuition is languageless. Language comes in if I want to
preserve the memory of the construction for myself, or if I want to make an attempt
to explain to my fellow mathematician what I did, in the hope she will be able to
do something similar. Language is not trustworty: it always may fail to do what
one expects it to do, as we all know from our experience as unsuccessful teachers
and forgetful researchers.

There is no such thing as an exact linguistic description of a mathematical con-
struction. The linguistic description only is the accompaniment of an act of un-
derstanding, either between me and one of my former selves, or between me and a
fellow mathematician.

Nevertheless, it is our task to study the language of mathematics carefully and
to find out where it perhaps may be improved. Although it is impossible we express
ourselves in a perfect way, we always have to try to do better than we did until
now.

1.5. Intuitionistic mathematics is constructive mathematics. Intuitionistic
mathematics is not a new, alternative kind of mathematics. Mathematics is intu-
itionistic mathematics. Brouwer’s revolution is a call for reflection. A sharpened
awareness of what it is we do when doing mathematics makes us more careful and
more precise and, thereby, hopefully, better mathematicians.

Intuitionistic mathematics is constructivemathematics. The reason is that math-
ematics itself essentially is constructive although this fact has been obscured by our
mistaken trust in (classical) logic.

Thinking of Brouwer’s ability in topology one may reflect that a continuous
function f from [0, 1]m to [0, 1]n has the property that, for each p in [0, 1]m, one
may effectively find approximations of the function value f(p) from approximations
of the argument p. Continuous functions are constructive functions: there is a deep
connection between Brouwer’s foundational interests and his topological concerns.

1.6. The contents of the paper. The paper is divided into 21 Sections. Section
2 treats the basic intuition giving rise to the nonnegative integers. Section 3 is a
short reflection on theorems and their proofs. In Sections 4-6, we consider three
famous results, that usually are taken to be negative statements although they
are not negative at all. In Section 4, we have a look at Euclid’s theorem that
there are infinitely many primes. In Section 5, we consider the theorem that

√
2

is irrational. In Section 6, we introduce the reals and Cantor’s theorem that there
are uncountably many of them. In Section 7, we introduce reals oscillating around
0: if x is such a number, one is unable to make out if x < 0, x = 0 or x > 0.
Section 8 explains the reasons for interpreting the logical constants constructively
and rejecting the principle of the excluded third X ∨ ¬X . In Section 9 we study
a basic result of real analysis: the Intermediate Value Theorem. The theorem is
an existential statement that fails when taken at its constructive face value, but, if
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suitably reformulated and adapted, leads to several true and useful results. Finding
such reconstructions of a constructively invalid result is part of the intuitionistic
program.

Intuitionistic mathematicians hold that every real function is (pointwise) con-
tinuous. In Section 10, we treat the preliminary observation that a real function
can not have a positive discontinuity. In Section 11, we go into the intuitionistic
meaning of negation. In Section 12, we introduce the Continuity Principle, an ax-
iom used by Brouwer and we show that this axiom leads to the positive result that
real functions are (pointwise) continuous.

In Section 13, we introduce the Fan Theorem, a theorem that perhaps, like the
Continuity Principle, should be called an axiom: we discover Brouwer’s ‘proof’:
most of us would call it a philosophical argument. One should note, however, that,
as long as we do not organize our mathematical results in a formal way, it is difficult
to distinguish axioms from theorems. As we shall see, the Fan Theorem implies that
a real function from [0, 1] to R is not only pointwise but even uniformly continuous.
As an aside, we prove that the Fan Theorem fails to be true in computable analysis.
In Section 14, we go into the rôle of the Fan Theorem in game theory.

In Section 15, we consider Brouwer’s Thesis on Bars in N = ωω, formulated as
a Principle of Bar Induction. The Thesis on Bars in N implies the Fan Theorem
but is a far stronger statement. We show how the argument for the Fan Theorem
extends to the Thesis on Bars in N . As an application we prove, in Section 16, the
Principle of Open Induction in [0, 1]. In Section 17 we give a second formulation
of Brouwer’s Thesis. This second formulation uses stumps : inductively generated
sets of finite sequences of natural numbers, whose rôle may be compared to the rôle
of countable ordinals in classical, non-intuitionistic analysis. As an application we
give, in Section 18, an intuitionistic formulation and proof of the Clopen Ramsey
Theorem, itself an impressive extension of Ramsey’s result from 1928. The proof of
this intuitionistic theorem has not been published before. In Section 19 we study
Borel sets. Because of the failure of De Morgan’s Law ¬∀n¬P (n)] → ∃n[P (n)], the
subject of descriptive set theory needs a complete reconstruction. In Section 20 we
reflect on the notion of a finite subset of the set N of the non-negative integers.
This mathematical notion may be made intuitionistically precise in uncountably
many ways. It is a perfect illustration of the subtlety and expressivity the language
of mathematics has obtained from Brouwer’s intervention.

In Section 21, we briefly describe how E. Bishop, who founded his own school
of constructive analysis in the 1960’s, treated Brouwer’s legacy, and how also P.
Martin-Löf’s view on constructive mathematics was influenced by Brouwer.

Many Sections may be read independently from other Sections.

2. The basic intuition

2.1. If you don’t become like little children . . .. 2

Mathematics is a child’s game and each of us, from his tender days, is familiar
with the infinite sequence:

0, 1, 2, 3, . . .

The sequence of these natural numbers or non-negative integers has no end.
No end? Can we always go on? Yes, yes, we can always go on!
We never die, or get tired of the game. Please, do not plague us with such silly

objections.
We courageously stick to the fascinating perspective of the never finished infinite.

2Matthew 18:3
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2.2. Induction and recursion. The function S produces, given any non-negative
integer n, the next one, S(n):

S(0) = 1, S(1) = 2, S(2) = 3, . . .

Let P be a property of non-negative integers such that one has a proof of P (0),
and, for each n, a proof of P

(

S(n)
)

from P (n), i.e. a proof of P (1) from P (0), a
proof of P (2) from P (1), a proof of P (3) from P (2), and so on. One then proves,
step by step, first P (1), then P (2), then P (3), and so on, that is, one proves, for
each n, P (n). We see this happening although the process is never finished.

The principle of complete induction on the non-negative integers thus is obvious.
Suppose one defines: for eachm, m+0 = m and for each n, m+S(n) = S(m+n).

One then calculates, first m+ 1 = m+ S(0), then m+ 2 = m+ S(1), then
m+ 3 = m+ S(2), and so on, and, in this way, one finds, for each n, the meaning
of m+ n.

This also is obvious.

2.3. The ‘logicist’ attempt to ‘prove’ induction. In the nineteenth century,
G. Frege and R. Dedekind tried to define the non-negative integers, logically or
set-theoretically, and then to prove the principle of complete induction and the
possibility of defining functions by recursion.

Brouwer considered such attempts futile and misleading.

2.4. Awakening consciousness. Brouwer spent a lot of thought on finding the
origin of the idea of the non-negative integers, see for instance [14].

A first thing, then a next thing, then another thing, and again another thing . . .

Mark the beginning: a first thing, then a next thing. Brouwer called it the
basic intuition of two-ity. He saw it happening in an awakening of slumbering
consciousness, a shift of attention, a moment’s reflection, or a move of time: here
I am, and now I see: ‘here I am’, and that is two things. Iterating this shift of
attention, I obtain three things, four things, and so on.

One is reminded of R. Dedekind’s proof of [23, Theorem 66]: There exist infi-
nite sets, for instance, the ‘world of my thoughts, meine Gedankenwelt ’. Dedekind
invokes a function s 7→ s′ that associates to every thought s of mine the thought
s′: ‘I am thinking of s’ and concludes, from the fact that this function should be
one-to-one and non-surjective, the latter because ‘I myself, mein eigenes Ich’ am a
thought of mine not of the form s′, that I have infinitely many thoughts.

As we mentioned already, Brouwer refers to Kant. Kant held that the concepts
of ‘time’ and ‘space’, the ‘forms’ of ‘inner sense’ and ‘outer sense’, respectively,
are apriori concepts, that is, independent from every observation by the senses.
These apriori concepts are studied by mathematics, in its two divisions: ‘arithmetic’
and ‘geometry’. Brouwer wants to maintain Kant’s conviction about the apriori
character of ‘time’ but rejects the apriori character of ‘space’. This is partly because
Kant believed space to be Euclidean, and, after Kant, one had the non-euclidean
revolution. Also, geometry may be ‘arithmetized’ and be robbed of its status as an
independent discipline.

2.5. The ‘set’ N. We use N to denote the set of the nonnegative integers. This
‘set’ is a well-understood totality but an ongoing project, in no sense finished or
complete. We use m,n, . . . , s, t, . . . as variables over N.

3. Theorems and their proofs

3.1. Mere announcements. One does not understand a mathematical theorem
immediately upon hearing its statement. The statement of the theorem is only a
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preliminary announcement, a partial communication, a promise. Its full meaning
will unfold itself in the proof, and understanding this full meaning is reserved for
someone who takes the trouble to go through the proof and to reconstruct it for
herself.

3.2. No to ‘Platonism’. The statement of a theorem tells us that some mental
construction has been succesfully completed. It is not reporting a fact one might
‘observe’ in a mathematical reality lying outside us.
The latter view has been strongly defended by Plato (427-347 B.C.). He believed
that the contemplation of the timeless mathematical reality, that one approaches
with the mind and not with the senses and that one should not touch with one’s
fingers3, would prepare us for the contemplation of what is the true interest of the
philosopher: the timeless reality of the ‘Ideas’.

The intuitionistic mathematician rejects this view. In the ancient debate between
Speusippus (405-338 B.C.) and Menaechmus (380-320 B.C.) as reported by Proclus
(410-485), she would definitely have sided with Menaechmus. Speusippus held
that every ‘problem’ essentially is a ‘theorem’, i.e. a truth to behold, whereas
Menaechmus defended the view that every ‘theorem’ essentially is a ‘problem’, i.e.
a construction to find and carry out.4 Proclus, in his wisdom, judged that both
views contain some truth5, and, indeed, one might say, both views try to explain a
part of our mathematical experience.
In our days, many mathematicians still feel they are discovering hard facts not of
their own making. They prefer a so-called realistic view, reminiscent of Plato’s,
while admitting it is difficult to give a convincing account of the mathematical
reality see [35, p. 123].

As to Brouwer’s formalist adversaries, some of them develop their formalisms
with an eye to ‘reality’ while others, like Brouwer himself, keep far from it. A famous
defender of the realistic point of view is K. Gödel (1906-1972). The formula CH in
the language of set theory that is taken to represent Cantor’s famous continuum
hypothesis6 has been shown, by Gödel himself in 1938, and by P. Cohen in 1963,
respectively, not to be refuted and not to be proven by the rules of first-order
predicate logic from the formulas accepted as representing ‘the’ axioms of set theory,
provided the latter do not give a contradiction. Gödel observed, even before Cohen
proved his result, that this fact does not solve the problem: we still have to find
out if CH holds in the mathematical universe, see [30]7.

The intuitionistic mathematician discards the realistic view: he believes it is
wrong and harmful for the practice of mathematics.

3.3. Propositions (as yet) without proof. From our intuitionistic perspective,
it seems impossible to fully understand a proposition that has (as yet) no proof.
We like to say, however, that we also ‘understand ’ the proposition ‘0 = 1’, in the
sense that we see this proposition never will have a proof.

Besides, propositions that are only partially understood in the sense that we have
as yet no proof and also do not see that we never will have one, have an important
part to play in mathematics. Let us consider an example.

3See Plato, Politeia (the Republic) VII 527a.
4The 48 propositions of the First Book of Euclid’s Elements (300 B.C.) are divided into 34

‘theorems’ and 14 ‘problems’.
5‘Both parties are right’, see [45, Prologue, Part Two, § 78]
6In an intuitionistic context, the classical continuum hypothesis has no immediate meaning.

One may however study meaningful statements that seem to come close tot it, see [29] and [65,
Sections 7 and 8].

7“Of course it is happening inside your head, Harry, but why on earth should that mean that
it is not real?” Dumbledore in: J.K. Rowling, Harry Potter and the Deathly Hallows
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Studying Euclid’s proof that there are infinitely many primes8, one comes to un-
derstand the statement: ‘there are infinitely many primes ’ and to enjoy its beauty
and depth. One now may ask: ‘Are there also infinitely many twin primes, i.e.
prime numbers p such that also p+2 is prime?’. By analogy, we have some under-
standing of the latter proposition. We can imagine what a proof of this proposition
might be and, in this sense, catch its meaning, although, up to now, no proof or
refutation has been found.

By his exemplary proof, Euclid suggests us how to (partially) understand other
propositions of the form ‘there are infinitely many numbers n such that P (n)’.

3.4. Negative theorems. There is a large supply of theorems whose statement
is negative. Such theorems report us that a construction of a kind we hoped for
is impossible. We obtain such conclusions imagining ourselves possessed of a con-
struction of the required kind and seeing that we then could prove 0 = 1. We
hastily retreat, admitting we were imagining the impossible.

Indeed, when constructing proofs, we often use our imagination. We make tem-
porary extra assumptions for the sake of the argument, that later perhaps will have
to be given up. G. Gentzen (1909-1945), the inventor of ‘Natural Deduction’, put
great emphasis on this fact. Gentzen was inspired by Brouwer, see [27, Section II,
§3].

In a sense, propositions with a negative conclusion are second-rank. They tell
us about a lost hope, a failure. Fortunately, many mathematical theorems are
unnecessarily negative. Their negative formulation is caused by laziness or lack of
attention. The intuitionistic mathematician likes to find the positive content of
seemingly negative statements.

In Sections 4, 5 and 6, trying to make this clear, we give some examples.

4. Infinitely many prime numbers

The following theorem is due to Euclid, see [25, Book IX, Proposition 20]. It is
important and rewarding to study the proof in the original.

Theorem 1. The prime numbers are more than every quantity of prime numbers
given beforehand.

Proof. Let the prime numbers given beforehand be A,B,C. I say that there are
more prime numbers than A,B,C. Let the least number measured by9 A,B,C be
taken, and let it be DE, and let the unit DF be added to it; we thus obtain EF .
EF is prime or EF is not prime10. First, let it be prime. Then the prime numbers
A,B,C,EF are more than A,B,C. Next, let EF be not prime. Then there is a
prime number that measures EF . Let it be G. I say G is not the same with any
of A,B,C. For, if possible, let it be so. Now A,B,C measure DE and thus also
G measures DE. But the number G also measures EF and thus the number G
measures the remainder DF which is a unit, and that is absurd. So G is not the
same with any of A,B,C. Thus prime numbers A,B,C,G are found which are
more than than the quantity of prime numbers A,B,C given beforehand. �

We now paraphrase Euclid’s proof in contemporary terms. Euclid explains us,
how, given any finite list q0, q1, . . . , qn−1 of prime numbers, one produces a prime
number q that is not on the list: consider c := the least common multiple of
q0, q1, . . . , qn−1. If c is prime, take q := c. If c is not prime, determine the least
number q > 1 that divides c. Then q is prime, and, for every i < n, q 6= qi.

8See Section 4.
9the least common multiple of
10Euclid makes this case distinction as he did not consider a number to be a divisor of itself.
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One may seriously wonder if this paraphrase is better than the original.
Note that Euclid only treats the case: n = 3. He of course expects the reader to

pick up the general idea from this exemplary case. The reader must be willing to
understand him. This is a conditio sine qua non for every written proof.

Also note that Euclid provides an algorithm: he demonstrates how, given any
finite list of prime numbers, one calculates a prime number that still is missing.

Most importantly, as we observed already in the previous Section, Euclid in
a way lays down the meaning of the word ‘infinite’. His proof suggests how to
understand a proposition of the form: ‘there are infinitely many numbers satisfying
A’. One may prove such a thing by doing something like he does in the case of the
prime numbers.

Sometimes, a description of Euclid’s proof is given that does no justice to the
argument. According to this description, one is invited to assume: there is a finite
list containing all the primes. Euclid then reduces this assumption to absurdity and
forces one to admit that the initial assumption is false: there is no such finite list,
which is to say: there are not finitely many primes.

G.H. Hardy, a great mathematician and a convinced platonist, has this view, see
[35, Section 12]. In the context of Euclid’s theorem, he calls reductio ad absurdum
‘one of a mathematician’s finest weapons ’, but adds a footnote stating: ‘The proof
can be arranged so as to avoid a reductio and logicians of some schools would prefer
that it should be.’

5.
√
2 is irrational

The theorem that
√
2 is irrational is also due to the Greeks and dates from 450

B.C.. In those days, mathematicians sometimes were called ‘those who know about
the odd and the even’. The theorem uses the following

Lemma 2. For all positive integers n, if n is odd, then n2 is odd.

Proof. Find p such that n = 2p+ 1. Then n2 = (2p+ 1)(2p+ 1) = 4p2 + 4p+ 1 =
2(2p2 + 2p) + 1. �

Theorem 3. There are no positive integers m,n such that
√
2 = m

n
.

Proof. Suppose there are. Find such m,n and assume: at least one of m,n is odd.
Then

√
2 = m

n
, so 2n2 = m2, so m2 is even and, by Lemma 2, also m is even and

4 divides m2 = 2n2, so n2 is even and, again by Lemma 2, n is even. We thus see:
both m,n are even. Contradiction. �

Already in ancient times, some people worried about this proof, in particular
about the sentence: ‘Suppose there are.’. How is it possible to suppose that

√
2

is rational? ‘Suppose’ must mean something like ‘Imagine’. How can one make a
clear mental picture of a fact that will turn out to be false? How to imagine the
impossible?

In particular, Parmenides (fl. 475 B.C.) and Zeno (fl. 450 B.C.), leading mem-
bers of the Eleatic school of philosophy, felt this difficulty. The Dutch mathemati-
cian G.F.C. Griss (1898-1953) shared their concern and suggested to Brouwer to
remove the proposition without proof, negation and the empty set from the dis-
course of mathematics. He started a redevelopment of intuitionistic mathematics,
see, for instance, [33]. Brouwer did not want to go into his suggestion, and offered
the somewhat surprising argument that, following it, one would impoverish the
subject, see [13]. Nevertheless, in intuitionistic, and, more generally, in construc-
tive mathematics, one avoids negation as much as possible, also for the reason that
negative results lack constructive content.
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The negatively formulated Theorem 3 may be replaced by a positive and affir-
mative result, as follows.

Definition 1. A real number x is positively irrational if and only if, given any
rational number q = m

n
one may effectively find a positive integer p such that

|x− m
n
| ≥ 1

p
.

Theorem 4.
√
2 is positively irrational.

Proof. Let m,n be given. Note 2n2 6= m2, and therefore: |2n2 − m2| ≥ 1 and

|2− m2

n2 | ≥ 1
n2 , that is |

√
2 + m

n
| · |

√
2− m

n
| ≥ 1

n2 . If
m
n
> 2, then m

n
−
√
2 > 1

2 and,

if m
n
≤ 2, then |

√
2 + m

n
| < 4 and |

√
2− m

n
| > 1

4n2 . �

6. Uncountably many reals

We sketch how to treat integers and rationals and then define the notion of a
real number, essentially like G. Cantor (1845-1918) did it, and Brouwer after him.

6.1. Integers and rationals. One first introduces, on the set N of the natural
numbers, the operations +, ·, exp and the relations <,≤ by recursive definitions, as
suggested in Section 2, and proves, by induction, their well-known nice properties.
One then defines a pairing function from N × N to N, for instance the function
(m,n) = 2m(2n + 1) − 1, with inverse functions K,L : N → N. We will write
m′ = K(m) and m′′ = L(m), so, for each m, m = (m′,m′′).

Then an equivalence relation =Z on N is introduced by:
m =Z n↔ m′ + n′′ = m′′ + n′. Integers, for us, are just natural numbers and not,
as in the usual treatment, the equivalence classes of the relation =Z. Functions and
relations on Z are functions and relations on N that respect the relation =Z. The
functions +Z, ·Z, the relations <Z,≤Z,and the special elements 0Z, 1Z are defined in
the way one would expect.

One then defines Q := {m | ¬(m′′ =Z 0Z)}. An equivalence relation =Q is
introduced on Q by: m =Q n ↔ m′ ·Z n′′ =Z m′′ ·Z n′. Rationals, for us, are
just natural numbers, but, whenever we consider natural numbers as rationals, we
respect =Q. The functions +Q, ·Q, the relations <Q,≤Q, and the special elements
0Q, 1Q are defined straightforwardly.

In general, we omit the subscripts ‘Z’, ‘Q’ unless we fear for confusion,
It is important to realize that all functions and relations mentioned so far are

algorithmic. We learned the algorithms at elementary school and know, for instance,
how to find out, given rationals p, q, if p =Q q or not.

6.2. Real numbers. We now are ready to introduce the reals.

Definition 2. A real number is an approximation process, an infinite sequence
x = x(0), x(1), . . . of pairs x(n) =

(

x′(n), x′′(n)
)

of rationals such that

(i) x is shrinking: for all n, x′(n) ≤ x′(n+ 1) ≤ x′′(n+ 1) ≤ x′′(n) and
(ii) x is dwindling: for all m, there exists n such that x′′(n)− x′(n) ≤ 1

2m .

R is the set of all real numbers. We use x, y, . . . as variables over R.

Brouwer gave Cantor’s notion his own colouring.
Every real number x = x(0), x(1), . . . is an infinite sequence of successive approxi-
mations, and, like the infinite sequence 0, 1, 2, . . . itself, never finished and always
under construction. Even if an algorithm has been given determing the successive
values of x, the finding of these successive values keeps us busy forever. The number
is the process of approximation itself: it makes no sense to ask for the limit point
that the successive approximations are striving for.

For all reals x, for all rationals p, q, for all n, if p <Q x′(n) <Q x′′(n) <Q q, we
say that (p, q) is an approximation of x of precision q −Q p.
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Definition 3. For all real numbers x, y, we define:
x <R y (x is smaller than y) if and only if ∃n[x′′(n) <Q y

′(n)], and:
x ≤R y (x is not greater than y) if and only if ∀n[x′(n) ≤Q y

′′(n)], and:
x #R y (x is apart from y) if and only if either x <R y or y <R x, and:
x =R y (x coincides with y) if and only if x ≤R y and y ≤R x.

We suppress the subscript ‘R’ if we expect that, doing so, we will not confuse
the reader.

Traditionally, our ‘real numbers’ would be called ‘number generators’.
The name ‘real number’ would then be reserved for equivalence classes of the form
[x] = {y ∈ R | y =R x}.
Also Brouwer does so, using the terms ‘point’ and ‘point kernel’.

We will not make this distinction but will only consider operations and relations
on R that respect the equivalence relation =R.

The relations <R and #R are positive relations. From a constructive point of
view, they are more important than the relations ≤R and =R. The latter two
relations are negative, and, moreover, expressible in terms of the positive relations,
as: x ≤R y ↔ ¬(y <R x) and: x =R y ↔ ¬(x #R y). Given real numbers x, y one
may prove: ‘x =R y’ by assuming: ‘x #R y’ and obtaining a contradiction.

It is important that the positive relations <R and =R are co-transitive, i.e.
x <R y → (x <R z ∨ z <R y) and x #R y → (x #R z ∨ z #R y).

It suffices to prove this for the first relation.
Given x, y, z such that x <R y, find n such that z′′(n) − z′(n) <Q y′(n) − x′′(n)
and decide: either x′′(n) <Q z

′(n) and x <R z or: z′′(n) <Q y
′(n) and z <R y.

6.3. Cantor’s proof. In 1873, Cantor proves the following, see [19, §2]:

Theorem 5. For every infinite sequence x0, x1, . . . of reals, there exists a real x
apart from every real in the sequence, that is: x #R x0, x #R x1, . . .

Proof. Let an infinite sequence x0, x1, x2, . . . of reals be given.
Define x = x(0), x(1), . . ., as follows, step by step.
First, define x(0) = (0, 1).
Now assume x(n) has been defined and x′′(n)− x′(n) =Q

1
3n .

Find m0 := the least m such that x′′n(m)− x′n(m) <Q
1

3n+1 .

Note: either 2
3x

′(n) +Q
1
3x

′′(n) <Q x
′
n(m0) or x

′′
n(m0) <Q

2
3x

′(n) +Q
1
3x

′′(n).

If 2
3x

′(n) +Q
1
3x

′′(n) <Q x′n(m0), define: x(n + 1) :=
(

x′(n), 23x
′(n) + 1

3x
′′(n)

)

and, if not, define x(n+ 1) :=
(

1
3x

′(n) + 2
3x

′′(n), x′′(n)
)

.

By this choice of x(n+1), we ensure x′′(n+1)−x′(n+1) =Q
1

3n+1 and x #R xn.
�

Our constructive argument differs but little from Cantor’s. Cantor makes it
perfectly clear how, given any countable list x0, x1, . . . , of reals, one produces a
real positively different from every real on the list.

We thus see that the statement ‘R is uncountable’, essentially, is a positive state-
ment.

Note that, by his exemplary proof, Cantor suggest to us how we should under-
stand and prove a proposition of the form ‘A ⊆ R is uncountable’.

One defines operations +R and ·R on R by:
for all n, (x+R y)(n) :=

(

x′(n) +Q y
′(n), x′′(n) +Q y

′′(n)
)

and

(x ·R y)(n) =
(

minQ(x
′(n) ·Q y′(n), x′(n) ·Q y′′(n), x′′(n) ·Q y′(n), x′′(n) ·Q y′′(n)),

maxQ(x
′(n) ·Q y′(n), x′(n) ·Q y′′(n), x′′(n) ·Q y′(n), x′′(n) ·Q y′′(n))

)

.
Also subtraction and an absolute value function x 7→ |x| may be defined.
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For every rational q, we define qR in R such that, for all n,
qR(n) = (q −Q

1
2n , q +Q

1
2n ).

We omit subscripts ‘R’ where we think it does no harm to do so.

7. Fugitive integers and oscillating reals

The following definition lies at the basis of many counterexamples in Brouwer’s
style to various mathematical results that do not stand a constructive reading.

We consider the decimal expansion of π, evaluating it step by step, hunting for
the first block of 99 consecutive 9’s. We would like to define k99 as the least number
n such that at the places n, n+ 1, . . . n+ 98 in the decimal expansion of π we find
the value 9, but we have to be careful as we do not know if such a number n exists.

Definition 4 (The fugitive ‘number’ k99). Let d = d(0), d(1), . . . be the decimal
expansion of π, that is: d is the function from N to {0, 1, . . . , 9} such that
π = 3 +

∑∞
n=0 d(n) · 10−n−1.

For each n, we define:
k99 ≤ n if and only if ∃j ≤ n∀i < 99[d(j + i) = 9], and:
n < k99 if and only if ∀j ≤ n∃i < 99[d(i+ j) 6= 9], and:
n = k99 if and only if k99 ≤ n and ∀j < n[j < k99].

Note that we do not define a natural number k99 but only the meaning of an
expression like ‘k99 ≤ n’.

Also note that, for each n, one may find out, for each of the propositions ‘k99 ≤ n’,
‘n < k99’, and ‘n = k99’, if they are true or not, by simply calculating the first n
values of the decimal expansion of π.

The statement ‘P := ∃n[n = k99]’ is a prime example of an undecided proposition,
i.e. we do not have a proof of P , but we also do not have a proof that we never
will find one, and we have no procedure to find either one of these proofs in finitely
many steps.

The problem of the 99 9’s in the decimal expansion of π is not important in
itself. It only is a pedagogical example, showing that we have no method to solve
this kind of problems. Should someone, by historical accident, find the 99 9‘s, then
one easily formulates a similar proposition that is still undecided.

Definition 5 (The ‘oscillating’ reals ρ0, ρ1, ρ2).
We define real numbers 0R, ρ0, ρ1 and ρ2, as follows.

0R is the real number such that, for all n, 0R(n) = (− 1
2n ,

1
2n ).

ρ0 = (12 )
k99 is the real number such that, for all n < k99, ρ0(n) := (− 1

2n ,
1
2n ),

and, for all n ≥ k99, ρ0(n) := ( 1
2k99

, 1
2k99

).

ρ1 = (− 1
2 )

k99 is the real number such that, for all n < k99, ρ1(n) = (− 1
2n ,

1
2n ),

and, for all n ≥ k99, if k99 is even, then ρ1(n) := ( 1
2k99

, 1
2k99

), and, if k99 is odd,

then ρ1(n) := (− 1
2k99

,− 1
2k99

).

Finally, ρ2 := ρ0 +R ρ1.

Now note the following:

(1) 0R =R ρ0 ↔ ∀n[n < k99], and we have no proof of ‘∀n[n < k99]’.
Also: ¬(0R =R ρ0) ↔ ¬∀n[n < k99], and we have no proof of ‘¬∀n[n < k99]’.
Finally: 0R <R ρ0 ↔ ∃n[n = k99], and we have no proof of ‘∃n[n = k99]’.
We thus see that, in general, given real numbers x, y, we have no means of

proving one of the propositions ‘x =R y’, ‘¬(x =R y)’ , ‘x <R y’.

(2) Note: 0R ≤R ρ0, but, as we saw, we have no proof of ‘0R =R ρ0’, nor of
‘0R <R ρ0’.
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We thus see that, in general, given real numbers x, y such that x ≤R y, we have
no means of proving either one of the propositions ‘x =R y’ or ‘x <R y’.

(3) Note: 0R ≤R ρ1 ↔ ∀n[n = k99 → ∃m[n = 2m]], and we have no proof of:
‘∀n[n = k99 → ∃m[n = 2m]]’.

Note: ρ1 ≤R 0R ↔ ∀n[n = k99 → ∃m[n = 2m + 1]], and we have no proof of:
‘∀n[n = k99 → ∃m[n = 2m+ 1]]’.

We thus see that, in general, given real numbers x, y, we have no means of
proving either one of the propositions ‘x ≤R y’, ‘y ≤R x’.

(4) Note: ρ2 =R 2 · ρ0 ↔ ∀n[n = k99 → ∃m[n = 2m]] and
ρ2 =R 0R ↔ ∀n[n = k99 → ∃m[n = 2m+ 1]]. We have no means of proving either
one of the propositions ‘ρ2 =R 2 · ρ0’, ‘ρ2 =R 0R’.
We will use use the number ρ2 in Section 9.

ρ0, ρ1, ρ2 are examples of real numbers oscillating around 0R.
ρ0 oscillates above 0R and ρ1 oscillates up and down around 0R.
ρ2 = ρ0 + ρ1 oscillates between 0R and 2 · ρ0.

8. Rejecting P ∨ ¬P
8.1. Mathematics and Logic. Brouwer describes mathematics as being devel-
oped by the mind having come to awareness and playfully exploring its possibili-
ties, see, for instance, [14]. Mathematics is not dependent on any evidence from the
senses. All other science is applied mathematics, as mathematics recognizes and
enforces patterns on the data acquired by observation.

Logic in particular is not a foundational science, prescribing the way one should
think, but an observational science. Mathematics is not reigned by logic. Math-
ematics is a languageless activity of the mind. As we observed already in Section
1, only when we want to communicate about mathematics, language comes in.
We communicate with other people, trying to induce them to make mathematical
constructions like the ones we ourselves are making, and we communicate with
ourselves, understanding the weakness of our memory, and hoping to be able to
remind ourselves tomorrow of what we did today. Observing ourselves and others
when we are busy communicating about mathematics, we take notes of the sounds
and signs that are used. We discover patterns and regularities, and then promote
such regularities to laws of logic. There is no guarantee, however, that someone,
even myself, who is making sounds or giving other signs in accordance with these
laws is actually succeeding in making successful mathematical constructions. In
this sense, the ‘laws of logic’ are unreliable.

Learning logic is part of learning the language of mathematics. Learning the
meaning of the connectives ‘. . .or. . .’, ‘. . .and . . .’, ‘. . . if . . . ’, and ‘not :. . .’, and
the quantifiers ‘∃x ∈ V [. . . x . . .]’ and ‘∀x ∈ V [. . . x . . .]’, is like learning the meaning
of the expressions ‘infinite’ or ‘uncountable’ in the case of Theorems 1 and 5.

A connective ∗ is a general method to obtain a new proposition, P ∗Q, from any
two given propositions, P and Q. Understanding P and Q means having some idea
about what counts as a proof of P,Q, respectively. If we are able to point out in
general terms what we should consider as a proof of P ∗Q, given our understanding
of proofs of P,Q, we will have explained the meaning of the connective ∗.

8.2. Disjunction. Let us start with the case of disjunction, ∨.
If someone says to us: ‘I have a proof of P ∨ Q, P or Q’, we expect, from our

experience with earlier situations in which the word ‘or’ occurred, that he will come
up with a proof of P or with a proof of Q. We therefore adopt the rule that a proof
of P ∨Q must consist either in a proof of P or in a proof of Q.
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One might bring forward that disjunction is not always taken in this construc-
tively strong sense. There were other situations too! Some mathematicians might
even say: ‘When I make a statement P ∨ Q, I merely want to remind my reader
that ¬P and ¬Q are not both true’.

The intuitionistic mathematician then answers: ‘ Sometimes one uses the stronger
interpretation and at other times one uses the weaker one. Let us end this confusion
and make the first and stronger interpretation the canonical one and always watch
what we want to say.’

Our decision implies that the statement:

∃n[k99 ≤ n] ∨ ∀n[n < k99], i.e. ∃n[k99 ≤ n] ∨ ¬∃n[k99 ≤ n].

is not a true statement.
Why?
Until now, we did not find a place in the decimal expansion of π where there is

an uninterrupted sequence of 99 digits 9: we have no proof of ‘∃n[k99 ≤ n]’.
Until now, we also did not find a clever argument showing that such an un-

interrupted sequence of 99 digits 9 never will be found: we have no proof of
‘¬∃n[k99 ≤ n]’.

Until now, therefore, we have no proof of ‘∃n[k99 ≤ n] ∨ ¬∃n[k99 ≤ n]’.

Note that there is an asymmetry in the two horns of the dilemma. The (possible)
truth of ∃n[k99 ≤ n] will become clear to anyone who just patiently calculates the
successive values of the decimal expansion of π, but the discovery of the (possible)
truth of ∀n[n < k99] requires mathematical ingenuity.

The example shows that the principle

If ∀n[P (n) ∨ ¬P (n)], then ∃n[P (n)] ∨ ¬∃n[P (n)]
is unreliable.

How did we come to trust it?
We unthinkingly generalized our experience with handling finite sets and bounded

quantifiers. After all, the following holds, for any given m, even for m = 1010
10

:

If ∀n ≤ m[P (n) ∨ ¬P (n)], then ∃n ≤ m[P (n)] ∨ ¬∃n ≤ m[P (n)],

because, at least in principle, we can check each of the numbers 0, 1, . . . ,m and find
out if one of them has the property P .

The case {0, 1, . . . ,m} does not extend to the case {0, 1, 2, . . .}.
Checking each of the infinitely many numbers 0, 1, 2, . . . is not feasible. If we think
we can do it we must imagine ourselves to be angels rather than human beings.

8.3. ‘Reckless’ or ‘hardy’ statements. When in a playful mood, we call the
statement:

∃n[k99 = n] ∨ ∀n[n < k99]

a reckless or hardy statement. Actually, it is foul play. We call the mathematician
upholding the above statement as true ‘reckless’ because we take him to read the
statement constructively. Probably, he will protest.

For us, the terms ‘reckless’ and ‘hardy’ indicate that the statement called so
has no constructive proof, although the non-intuitionistic mathematician, using his
own reading, sees no objection.

Other examples of reckless statements are:

¬∀n[n < k99] ∨ ∀n[n < k99]

∃n[n = k88] → ∃n[n = k99]

∀n[2n 6= k99] ∨ ∀n[2n+ 1 6= k99]

∃n[n = k88] → (∀n[2n 6= k99] ∨ ∀n[2n+ 1 6= k99])
12



‘n = k88’ here stands for: ‘n is the least number m such that at the places
m,m+ 1, . . . ,m+ 87 in the decimal expansion of π we find the value 8’.

Theorems implying a reckless statement themselves will be considered reckless.

8.4. Brouwer’s example and the halting problem. The above example of an
undecided proposition, ‘∃n[n = k99]’, is simple and very important. A first such
example was given by Brouwer in [10].

The example is related to the discovery, in 1936, of the ‘halting problem’ by
A.M. Turing (1912-1954). We briefly describe this problem using the approach
developed by S.C. Kleene (1909-1994), see [40, Chapter XI].

Natural numbers are used for coding algorithms for (partial) functions from N
to N. There is a computable predicate on triples of natural numbers called T . For
all e, n, z, T (e, n, z) if and only if z codes a successful computation according to the
algorithm coded by e at the argument n. The algorithm coded by e halts at n if
and only if ∃z[T (e, n, z)]. There is a function U from N to N that extracts from
every z coding a computation the outcome U(z) of the computation. A function α
from N to N is computable if and only if there exists e such that
∀n∃z[T (e, n, z) ∧ U(z) = α(n)]. A number e with this property is called an index
of the function α.

Every number e determines a partial function ϕe from N to N:
for all n, ϕe(n) = U(z), where z is the least number w such that T (e, n, w).
ϕe is only defined at n if ∃w[T (e, n, w)].

The (self-)halting problem is the question if there exists a computable function
α from N to N such that, for each e,

α(e) 6= 0 ↔ ∃z[T (e, e, z)] ↔ ϕe is defined at e.

Such a computable function α would be called a solution to the halting problem.
Turing’s theorem is that there is no solution to the halting problem.

One may prove, without much difficulty, that there exists e such that
∃n[k99 ≤ n] ↔ ∃z[T (e, e, z)]: the example we considered is one of the problems
in the scope of the halting problem. Therefore, a solution to the halting problem
would also solve the problem: ‘∃n[k99 ≤ n]’. This fact gives some apriori probability
to Turing’s result.

8.5. The other logical ‘constants’. The so-called proof-theoretical interpretation
of the disjunction we sketched in Subsection 8.2 is extended to the other logical
‘constants’ as follows.

A proof of ‘P and Q’ is a proof of ‘P ’ together with a proof of ‘Q’.
A proof of ‘if P , then Q’ is

a proof of ‘Q’ possibly using ‘P ’ as an extra assumption.
A proof of ‘not P ’ is a proof of ‘if P , then 0=1’.

For explaining the quantifiers, we need the notion of a propositional function. Let
V be a set and let v 7→ P (v) a function that associates to every v in V a proposition
P (v). We then may introduce propositions ∃x ∈ V [P (x)] and ∀x ∈ V [P (x)] by
stipulating:

A proof of ‘∃x ∈ V [P (x)]’ consists of an element v of V together with a proof of
the proposition ‘P (v)’.

A proof of ∀x ∈ V [P (x)] is a function v 7→ p(v) associating to every v in V a
proof p(v) of the proposition ‘P (v)’.

These explanations are not to be considered as exact definitions. They only
indicate a provisional intention as to how we want to use our words.
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9. A test case: the Intermediate Value Theorem

9.1. The theorem. A function from X ⊆ R to R is an effective method f , that,
given any input x from X , will produce a well-defined outcome f(x) in R, of course
respecting the fundamental relation of real coincidence, i.e.

for all x, y in X , if x =R y, then f(x) =R f(y).

We take the notion of a function as a primitive notion, i.e. we do not explain what
a function is by using notions that have been introduced before.

Definition 6. Let f be a function from X ⊆ R to R and let x in X be given.
f is continuous at x if and only if ∀p∃m∀y ∈ X [|y−x| < 1

2m → |f(y)−f(x)| < 1
2p ].

f is continuous if and only if f is continuous at every x in X .

The Intermediate Value Theorem states the following:

Let f be a continuous function from [0, 1] to R.
Then ∀y ∈ R[f(0) ≤ y ≤ f(1) → ∃x ∈ [0, 1][f(x) = y]].

The first version of this Theorem dates from 1817 and is due to B. Bolzano
(1781-1848), see [5].

Note that the intuitionistic mathematician reads the statement of the Theorem
differently from his non-intuitionistic colleague: he understands the logical con-
stants constructively, as sketched in Section 8.

9.2. The proof as we learnt it. One may use the fruitful method of successive
bisection, as follows.

Let y be given such that f(0) ≤ y ≤ f(1).
Define x in [0, 1], step by step, as follows.
Define x(0) := (0, 1).

Now let n be given such that x(n) has been defined already.

Consider m := x′(n)+x′′(n)
2 , the midpoint of the rational interval

(

x′(n), x′′(n)
)

.

If f(m) ≤ y, define x(n+ 1) =
(

m,x′′(n)
)

.

If y < f(m), define x(n+ 1) =
(

x′(n),m
)

.

This completes the definition of x.

x is a well-defined real number, and, as one verifies by induction,
for every n, x′′(n)− x′(n) = 1

2n and f
(

x′(n)
)

≤ y ≤ f
(

x′′(n)
)

.
We claim: f(x) = y, and we prove this claim as follows.

Assume y <R f(x). Using the continuity of f at x, find r such that
∀z ∈ [0, 1][|x− z| < 1

2r → y <R f(z)].

Note: |x− x′(r + 1)| < 1
2r , and, therefore, y <R f

(

x′(r + 1)
)

], but also

f
(

x′(r + 1)
)

<R y.
Contradiction.
Conclude: ¬

(

y <R f(x)
)

, i.e. f(x) ≤R y.

By a similar argument, conclude: y ≤R f(x) and: f(x) =R y.

9.3. An objection to the ‘proof’. The construction of the point x, in the above
argument, can not be carried out, as, in general, we are unable to decide:

f(m) ≤R y or y <R f(m).

9.4. Two counterexamples to the theorem. We give two examples showing
that the statement of the theorem, if one reads it constructively, sometimes fails to
be true.

First example.
Let ρ1 = (− 1

2 )
k99 be the number oscillating up and down around 0R introduced

in Definition 5. Define a function f0 from [0, 1] to R such that
14



(i) f0(0) = 0 and f0(1) = 1 and f0(
1
3 ) = f0(

2
3 ) =

1
2 + ρ1, and

(ii) f0 is linear on the interval [0, 13 ], on the interval [ 13 ,
2
3 ] and on the interval

[ 23 , 1].

Note: 0 < ρ1 ↔ ∀x ∈ [ 13 , 1][f0(x) >
1
2 ] and

ρ1 < 0 ↔ ∀x ∈ [0, 23 ][f0(x) <
1
2 ].

Assume we find x such that f0(x) =
1
2 .

Find p such that x′′(p)− x′(p) < 1
3 and note: either 1

3 < x′(p) or x′′(p) < 2
3 .

If 1
3 < x′(p), then 1

3 < x and ¬(0 < ρ1), that is: ρ1 ≤ 0, and,

if x′′(p) <Q
2
3 , then x <

2
3 and ¬(ρ1 < 0), that is: 0 ≤ ρ1.

Conclude: either 0 ≤ ρ1 or ρ1 ≤ 0.
This is a reckless or hardy conclusion.

Second example.
Let ρ0 = (12 )

k99 the number oscillating above 0R introduced in Definition 5 and

let ρ2 = ρ0+ρ1 = (12 )
k99 +(− 1

2 )
k99 be the number oscillating between 0R and 2 ·ρ0,

also introduced in Definition 5.
Define a function f1 from [0, 1] to R such that

(i) f1(0) = 0 and f1(
1
2 ) = ρ0 and f1(1) = ρ2, and

(ii) f1 is linear on the interval [0, 12 ] and on the interval [ 12 , 1].

Note: f1(0) ≤ 1
2 · ρ2 ≤ f1(1).

If ∃n[2n = k99],
then 0 < ρ0 ∧ ρ2 = 2 · ρ0 and ∀x ∈ [0, 1][f1(x) =

1
2 · ρ2 → x = 1

2 ], and,
if ∃n[2n+ 1 = k99],
then 0 < ρ0 ∧ ρ2 = 0 and ∀x ∈ [0, 1][f1(x) =

1
2 · ρ2 → (x = 0 ∨ x = 1)].

Suppose we find x in [0, 1] such that f1(x) =
1
2 · ρ2.

Find p such that x′′(p)− x′(p) < 1
2 and note:

either x′′(p) < 1
2 or 1

2 < x′(p) or 0 < x′(p) and x′′(p) < 1.

If x′′(p) < 1
2 or 1

2 < x′(p), then ¬∃n[2n = k99].
If 0 < x′(p) and x′′(p) < 1, then ¬∃n[2n+ 1 = k99].
We thus see: ¬∃n[2n = k99] or ¬∃n[2n+ 1 = k99].
This is a reckless or hardy conclusion.

Note that the above counterexamples pose a serious problem to the mathemati-
cian. If the Intermediate Value Theorem does not stand a straightforward construc-
tive reading, what then is its meaning? The defender of the theorem must mumble
something like: ‘Well, I did not mean that you really could find a point where f
assumes the intermediate value, but . . .’

Mathematical theorems without ‘numerical content’ are a shame and an em-
barassment.

We should not, because of these examples, put aside the Intermediate Value
Theorem as nonsense, but, arguing carefully, try and find related statements that
are constructively true.

9.5. An approximate version. It helps to weaken the conclusion of the Inter-
mediate Value Theorem by requiring only that, for every given accuracy 1

2p , there
exists a point where the function assumes a value closer to the given intermediate
value than 1

2p .
Brouwer, who knew his own famous fixed-point theorem to be constructively

false, formulated and proved such an approximate fixed-point theorem, see [15] 11.

11The 1-dimensional case of Brouwer’s fixed-point theorem is closely related to the Intermediate
value Theorem.
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Note that the proof of the new theorem still is using the method of successive
bisection.

Theorem 6 (The Approximate Intermediate Value Theorem).
Let f be a continuous function from [0, 1] to R.
Then ∀p∀y ∈ R[f(0) ≤ y ≤ f(1) → ∃x ∈ [0, 1][y − 1

2p < f(x) < y + 1
2p ].

Proof. Let p be given and let y be given such that f(0) ≤ y ≤ f(1).
Define x in [0, 1], step by step, as follows.
Define x(0) := (0, 1) and note: f

(

x′(0)
)

− 1
2p+1 < y < f

(

x′′(0)
)

+ 1
2p+1 .

Now let n be given such that x(n) has been defined already.

Consider m := x′(n)+x′′(n)
2 and z := f(m).

Find l:= the least k such that both z′′(k)− z′(k) < 1
2p+1 and

y′′(k)− y′(k) < 1
2p+1 and define s := z(l).

1. If s′′ < y′(l) + 1
2p+1 , define x(n+ 1) = (m,x′′(n)).

Then: f(m) ≤ s′′ < y′(l) + 1
2p+1 ≤ y + 1

2p+1 and: f(m)− 1
2p+1 < y.

2. If not s′′ < y′(l) + 1
2p+1 , define x(n+ 1) = (x′(n),m).

Then: y′′(l) < y′(l) + 1
2p+1 ≤ s′′ < s′ + 1

2p+1 and: y < f(m) + 1
2p+1 .

This completes the definition of x.

x is a well-defined real number, and,
for every n, x′′(n)− x′(n) = 1

2n and f
(

x′(n)
)

− 1
2p+1 < y < f

(

x′′(n)
)

+ 1
2p+1 .

Using the fact that f is continuous at x, find r such that
∀z ∈ [0, 1][x− 1

2r < z < x+ 1
2r → f(x) − 1

2p+1 < f(z) < f(x) + 1
2p+1 ].

1. Note: x− 1
2r < x′(r + 1) ≤ x, and:

f(x) < f(x′(r + 1)) + 1
2p+1 < y + 1

2p+1 + 1
2p+1 = y + 1

2p .

2. Note: x ≤ x′′(r + 1) < x+ 1
2r , and:

y < f
(

x′′(r + 1)
)

+ 1
2p+1 < f(x) + 1

2p+1 + 1
2p+1 = f(x) + 1

2p .

Conclude: y − 1
2p < f(x) < y + 1

2p . �

9.6. Locally non-constant functions. One may also try to restrict the class of
functions to which the Intermediate Value Theorem applies. Observe that the two
functions mentioned as counterexamples in Subsection 9.4 have the property that,
over a whole interval, one does not know if they change their value. Let us try to
forbid such behaviour. We require constructive evidence that, for every y, for every
interval (p, q), the function does not have, on the interval (p, q), the constant value
y.

Definition 7. A function f from [0, 1] to R is locally non-constant if and only if
∀y ∈ R∀p ∈ Q∀q ∈ Q[0 < p < q < 1 → ∃x ∈ [0, 1][p < x < q ∧ f(x) #R y]].

The following Lemma says that, if, for a given intermediate value y, the function
f assumes, in any given interval, a value positively different from y, then there is a
point where f assumes the value y.

Lemma 7. Let f be a continuous function from [0, 1] to R.
Let y be given such that f(0) ≤ y ≤ f(1) and
∀p ∈ Q∀q ∈ Q[0 < p < q < 1 → ∃x ∈ [0, 1][p < x < q ∧ f(x) #R y]].
Then ∃x ∈ [0, 1][f(x) = y].

Proof. Let y be given such that f(0) ≤ y ≤ f(1).
Define x in [0, 1], as follows, step by step.
Define x(0) := (0, 1).

Now let n be given such that s := x(n) has been defined.
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Using the continuity of f , find a rational number q such that
2
3s

′ +Q
1
3s

′′ < q < 1
3s

′ +Q
2
3s

′′ and f(q) #R y.

If f(q) <R y, define x(n+ 1) :=
(

x′(n), q
)

, and,

if y <R f(q), define x(n+ 1) :=
(

q, x′′(n)
)

.
This completes the definition of x.

x is a well-defined real number, as, for each n,
x′(n) ≤ x′(n+1) ≤ x′′(n+1) ≤ x′′(n) and x′′(n+1)−x′(n+1) ≤ 2

3

(

x′′(n)−x′(n)
)

.

Moreover, for each n, f
(

x′(n)
)

≤R y ≤R f
(

x′′(n)
)

.

Assume: f(x) <R y.
Find p such that 1

2p < y −R f(x), and find q such that

∀z ∈ [0, 1][|z − x| < 1
2q → |f(z)− f(x)| <R

1
2p ].

Then ∀z ∈ [0, 1][|z − x| < 1
2q → f(z) <R y. Find r such that (23 )

r < 1
2 )

q.
Conclude: f(x′′(r)) <R y. Contradiction.

We thus see: ¬(f(x) <R y), that is: f(x) ≥R y.

For similar reasons: f(x) ≤R y. Conclude: f(x) =R y. �

Theorem 8 (The Intermediate Value Theorem for locally non-constant functions).
Let f be a continuous and locally non-constant function from [0, 1] to R. Then

∀y[f(0) ≤ y ≤ f(1) → ∃x ∈ [0, 1][f(x) = y]].

Proof. Use Lemma 7. �

Many real functions may be proven to be locally non-constant and Theorem 8
is widely applicable12.

From a constructive point of view, the next result, Theorem 9 is not a nice result.
The result nevertheless is instructive. The intuitionistic mathematician may say:
‘Yes, this explains the classical mathematician’s belief that the Intermediate Value
Theorem is true. He means no more than that it is impossible to have constructive
evidence, for every point x in the domain of the function, that the value assumed at
x is apart from the given intermediate value. Unfortunately, even if this impossible,
it may also be impossible to find a point where the intermediate value is assumed.’

Theorem 9 (The Negative Intermediate Value Theorem).
Let f be a continuous function from [0, 1] to R.
Then ∀y[f(0) ≤ y ≤ f(1) → ¬∀x ∈ [0, 1][f(x) #R y]].

Proof. Use Lemma 7. �

9.7. At most countably many exceptions. One may also observe that the
Intermediate Value Theorem goes through for ‘most’ intermediate values.

Theorem 10 (The Intermediate Value Theorem holds with at most countably
many exceptions13). Let f be a continuous function from [0, 1] to R.

There exists an infinite sequence y0, y1, . . . of elements of [0, 1] such that
∀y[

(

f(0) ≤ y ≤ f(1) ∧ ∀n[y #R yn]
)

→ ∃x ∈ [0, 1][f(x) = y]].

Proof. Let q0, q1, q2 . . . be an enumeration of all rational numbers q in [0, 1]. For
each n, define yn := f(qn).

Let y in [0, 1] be given such that ∀n[y #R yn].
Define x in [0, 1], step by step.
Define x(0) := (0, 1) and note: f(0) <R y <R f(1).

12Theorems 6 and 8 may be found in [8, Theorem 2.5].
13In [4], one finds various theorems ‘with countably many exceptions’, for instance, Theorem

4.9: if f ; [0, 1] → R is uniformly continuous, then for all but countably many y ≥ inf(f) the set
{x ∈ [0, 1] | f(x) ≤ y} is (constructively) compact.
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Now let n be given such that x(n) is defined and f
(

x′(n)
)

<R y <R f
(

x′′(n)
)

.

Consider m := x′(n)+x′′(n)
2 . If f(m) <R y, define: x(n + 1) := (m,x′′(n)), and,

if y <R f(m), define: x(n+ 1) := (x′(n),m). Then
f
(

x′(n+ 1)
)

<R y <R f(
(

x′′(n+ 1)
)

.
This completes the definition of x.

Using the argument given in the last part of the proof of Lemma 7, one proves:
f(x) =R y. �

9.8. Perhaps, perhaps, perhaps,. . ..
Suppose we change the conclusion of the Intermediate Value Theorem into

(∗) ∃x0[f(x0) #R y → ∃x1[f(x1) =R y]],
Perhaps14, f assumes the value y.

One may think of (∗) as follows. You are offered x0 where f should assume the
value y. If you discover x0 clearly does not work, you may go back to the shop and
ask for a better number and will be offered x1 and x1 certainly will work.

One may reconsider the two counterexamples given in Subsection 9.4, the func-
tions f0 and f1, in the light of this definition.

We have seen that the statement ‘f0 assumes the value 1
2 ’ is reckless, but, if

f0(
1
2 ) #R

1
2 , then ρ1 #R 0 and: either 0 <R ρ1 and f0(

1
3 · 1

1+2·ρ1
) = 1

2 , or ρ1 <R 0

and f0(
2
3 − 2·ρ1

1−2·ρ1
) = 1

2 . We thus see: perhaps, f0 assumes the value 1
2 .

We also have seen that the statement ‘f1 assumes the value 1
2 · ρ2’ is reckless,

but, if f1(0) #R
1
2 · ρ2, then ρ2 #R 0R and ρ0 =R ρ1 and f1(

1
2 ) =R

1
2 · ρ2. We thus

see: perhaps, f1 assumes the value 1
2 · ρ2.

The funny thing is that the operation Perhaps may be repeated. One may
consider the statement:

∃x0[f(x0) #R y → ∃x1[f(x1)#R y → ∃x2[f(x2) =R y]]],
Perhaps, perhaps, f assumes the value y.

We give an example showing that this statement indeed may be weaker than the
previous one, with only one ‘perhaps’.

Another example.
Consider ρ1 = (− 1

2 )
k99 but also ρ3 := (− 1

2 )
k88 .

Define a function f2 from [0, 1] to R such that

(i) f2(0) = 0 and f2(1) = 1 and f2(
1
5 ) = f2(

2
5 ) =

1
2 + ρ1, and

f2(
3
5 ) = f2(

4
5 ) =

1
2 + ρ3, and,

(ii) for each i ≤ 4, f2 is linear on the interval [ i5 ,
i+1
5 ].

Let us first observe: if f2(
1
5 ) #R

1
2 and also f2(

3
5 ) #R

1
2 , then ρ1 #R 0 and

ρ3 #R 0 and ∃x[f(x) =R
1
2 ]. Conclude:

Perhaps, perhaps, f2 assumes the value 1
2 .

Now assume: Perhaps, f2 assumes the value 1
2 .

Find x0 such that, if f2(x0) #R
1
2 , then ∃x1[f2(x1) =R

1
2 ].

Distinguish two cases.

Case (1). x0 <R
8
15 . Assume: ρ1 <R 0.

Define x1 := sup(x0,
2
5 ) and note f(x1) = f(25 ) + (x1 − 2

5 ) · 5(ρ3 − ρ1) =
1
2 + ρ1 + (x1 − 2

5 ) · 5(ρ3 − ρ1) ≤R
1
2 + ρ1 + ( 8

15 − 2
5 ) · 5(ρ3 − ρ1) =

1
2 + 1

3ρ1 +
2
3ρ3.

Conclude: f(x0) ≤R f(x1) <R
1
2 or 0 <R ρ3.

14A similar use of the expression ‘Perhaps’ is made in Section 20.
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In both cases, one may conclude:
∃x ∈ [0, 1][f2(x) =R

1
2 ] and: 0 ≤R ρ3 ∨ ρ3 ≤R 0.

We thus see: if ρ1 <R 0, then 0 ≤R ρ3 ∨ ρ3 ≤R 0, i.e.
if ∃n[2n+ 1 = k99], then ∀n[2n+ 1 6= k88] ∨ ∀n[2n 6= k88],
a reckless or hardy conclusion.

Case (2). 7
15 <R x0. By a similar argumnet, we obtain the result:

if 0 <R ρ3, then 0 ≤R ρ1 ∨ ρ1 ≤R 0, i.e.
if ∃n[2n = k88], then ∀n[2n+ 1 6= k99] ∨ ∀n[2n 6= k99],
a reckless or hardy conclusion.

We thus see that the statement

‘Perhaps, f2 assumes the value 1
2 ’

has reckless consequences.

One now may define:

Perhaps0(f, y) if and only if ∃x[f(x) = y]

and, for each n,

Perhapsn+1(f, y) if and only if ∃x[f(x) #R y → Perhapsn(f, y)]

and also

Perhapsω(f, y) if and only if ∃n[Perhapsn(f, y)],
and

Perhapsω+1(f, y) if and only if ∃x[f(x) #R y → Perhapsω(f, y)].

and prove that in general, alle these statements have different meanings. Going
this path further, increasing the number of ‘perhapses’ further into the transfi-
nite, one finds uncountably many intuitionistically different versions of the notion:
‘∃x[f(x) =R y]’, see [56].

10. A function from R to R is nowhere positively discontinuous

In the next three Sections we study the intuitionistic claim that every real func-
tion is continuous. The first theorem, Theorem 11, is weak and negative.

10.1. No positive discontinuity.

Definition 8. Let f be a function from X ⊆ R to R and let x in X be given.

f is positively discontinuous at x if and only if
∃p∀m∃y ∈ X [|y − x| < 1

2m ∧ |f(y)− f(x)| ≥ 1
2p ].

Theorem 11. 15Let f be a function from X ⊆ R to R. Assume there exists x in
X such that f is positively discontinuous at x. Then there exists z in R such that
we can not calculate f(z), so z can not belong to X .

Proof. Let X , f, x satisfy the conditions of the theorem.
Without loss of generality, we may assume: x = 0 = f(0).
Find p such that ∀m∃y ∈ X [|y| < 1

2m ∧ |f(y)| > 1
2p ].

Find an infinite sequence y0, y1, . . . of reals such that
∀m[|ym| < 1

2m ∧ |f(ym)| > 1
2p ].

We give two arguments establishing the conclusion of the theorem.

First argument.
I start constructing a real number z in an infinite sequence of steps, defining

successively z(0), z(1), z(2), . . ..
I promise to take care that for each n, z′(n) ≤ z′(n+ 1) ≤ z′′(n + 1) ≤ z′′(n) and

15Cf. [17, Theorem 1].
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z′′(n)− z′(n) = 1
2n−1 . I am free, within these bounds, to choose each z(n) as I like

it.
I have in mind to perhaps ‘freeze’ the free development of z, at some step n, by

making a decision that determines all values from that step n on.
I define z(0) = (−1, 1) and do not freeze z at step 0. For each n > 0, if z has not

yet been frozen at one of the earlier steps, either I do not freeze z at this step and
define z(n) = (− 1

2n ,
1
2n ), or I freeze z by defining, for each i, z(n+ i) = yn−1(q+ i),

where q is the least k such that − 1
2n−1 < y′n−1(k) ≤ y′′n−1(k) <

1
2n−1 .

z is a well-defined real number.
Note: if I never make use of my freedom to freeze z, then z =R 0 and f(z) =R 0.
Note: if I do use this freedom at some step n > 0, then z =R yn−1 and

|f(z)| =R |f(yn−1)| >R
1
2p .

But I am free and do not know myself if I ever will make use of the possibility
to freeze z or not.

I thus am unable to find an approximation of f(z) smaller than 1
2p .

We must conclude: f is not defined at the argument z and z does not belong to
the domain X of f .

Second argument.
Define z such that, for each n,

if n < k99, then z(n) = (− 1
2n ,

1
2n ), and, if k99 ≤ n, then z(n) = yk99

(q + n),

where q is the least k such that − 1
2k99

< y′k99
(k) ≤ y′′k99

(k) < 1
2k99

.

Note: if ∀n[n < k99], then f(z) =R f(0R) =R 0, and,
if ∃n[n = k99], then |f(z)| =R |f(yk99

| >R
1
2p .

Assume we may calculate f(z). By finding an approximation of f(z) smaller
than 1

2p we will be able to decide: f(z) #R 0 or |f(z)| <R
1
2p .

Case (a). f(z) #R 0, and, therefore: ¬∀n[n < k99].
Case (b). |f(z)| < 1

2p , and, therefore: ∀n[n < k99].
Conclude: ¬∀n[n < k99] ∨ ∀n[n < k99].
This is a reckless conclusion.
We must admit that, at this point of time, f is not defined at z and z does not

belong to the domain X of f . �

Clearly, a function from X ⊆ R with a positive discontinuity can not be calcu-
lated at every point of R. In Brouwer’s terminology: such a function is not a full
function.

11. The meaning of ‘not’

11.1. A weak and a strong interpretation.
May we conclude, from Theorem 11:

A function f from R to R is not positively discontinuous at any
point x in R?

We have to be careful. There is some ambiguity in the use of the word ‘not ’.
When saying:

‘not: (∃n[n = k99] ∨ ∀n[n < k99])’

we mean no more than:

‘As yet, we have no proof of ‘∃n[n = k99 ∨ ∀n[n < k99]’.

Most of the time, however, we take a proposition ‘not P ’, ‘¬P ′, in the stronger
sense indicated in Subsection 8.5: ‘Assuming P , one is led to a contradiction’. This
strong interpretation of ‘not’ is the canonical one. It follows from reading ‘not-P ’
as ‘P → 0 = 1’ and interpreting the implication ‘P → Q’ as: ‘Assuming P , one
may prove Q’.
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Following this strong and canonical interpretation, one may prove, for any propo-
sition P ,

¬¬(P ∨ ¬P ),
as follows: Assume: ¬(P ∨ ¬P ), i.e. P ∨ ¬P leads to a contradiction. Then

both P and ¬P will lead to a contradiction. We thus see: ¬P and: ¬P leads to a
contradiction. We therefore have a contradiction.

Conclude: ¬(P ∨ ¬P ) leads to a contradiction, i.e. ¬¬(P ∨ ¬P ).
In particular, we find:

¬¬(∃n[n = k99] ∨ ∀n[n < k99]).

11.2. Some useful remarks.
Defining Q := ∃n[n = k99] ∨ ¬∃n[n = k99], we see that there are propositions
Q such that ¬¬Q is true but Q itself is reckless or hardy. On the other hand, for
every proposition Q, if Q, that is: Q has a proof, then ¬Q, (the statement that Q
leads to a contradiction), leads indeed to a contradiction, i.e. if Q, then ¬¬Q.

Later in this paper, we need the following law of contraposition:
if P → Q, then ¬Q→ ¬P , and its consequence: if P → Q, then ¬¬P → ¬¬Q.

This law is easily seen to be valid for the proof-theoretical interpretation,
Using it, one sees that, as Q→ ¬¬Q is always true, also ¬¬¬Q→ ¬Q is always

true. (The scheme ¬¬¬Q → Q was discovered by Brouwer and may be called
Brouwer’s first law of logic).

Also note:
if (P ∨ ¬P ) → ¬Q, then, as ¬¬(P ∨ ¬P ), one has: ¬¬¬Q, and, therefore: ¬Q.

This fact may be useful in practice: if it is our aim to prove a negative statement
¬Q it does no harm to make an extra ssumption P ∨ ¬P .

One should keep in mind: ¬P means: P is reducible to absurdity. Therefore,
the constructive mathematician has nothing to criticize if someone proves ¬P by
reducing P to absurdity. If one does so, one does what one has to do.16 She
feels unhappy, however, if one proves P itself by reducing ¬P to absurdity. The
conclusion of the latter procedure is ¬¬P only, a statement that, most of the time,
is weaker than P .

11.3. More fugitive numbers. The following Definition extends Definition 4.

Definition 9 (The fugitive numbers kα). Let an infinite sequence
α = α(0), α(1), α(2), . . . of natural numbers be given. For each n we define17 :
kα ≤ n if and only if ∃j ≤ n[α(j) 6= 0], and:
n < kα if and only if ∀j ≤ n[α(j) = 0], and:
n = kα if and only if kα ≤ n and ∀j < n[j < kα], i.e.

n is the least j such that α(j) 6= 0.
LPO, the limited principle of omniscience18, is the statement

∀α[∃n[kα ≤ n] ∨ ∀n[n < kα]].

WLPO, the weak limited principle of omniscience is the statement

∀α[¬∀n[n < kα] ∨ ∀n[n < kα]].

16Hardy’s finest weapon is not bad in itself but can only be used for proving negative state-
ments. Constructively, negative statements are not so useful. There are better statements and
finer weapons.

17Note that we do not define a natural number kα bot only the meaning of an expression like
‘kα ≤ n’.

18This statement got its name from the American analyst E. Bishop, who, fifty years after
Brouwer, founded his own school of constructive analysis, see [8, page 3]. The name comes from
calling the Principle of the Excluded Third P ∨ ¬P the Principle of Omniscience, a perhaps
infelicitous decision, as the name suggests mathematics is a matter of ‘knowing facts’.
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Using the second argument in the proof of Theorem 11 one may see:
If a real function from R to R has a positive discontinuity, then WLPO.

For an informal constructive mathematician like Brouwer, LPO, and also
WLPO, represent the absurd, the contradiction, a statement one feels sure never
to be able to prove. For her, the argument for Theorem 11 establishes, for every
‘full’ function f from R to R,

¬(there exists x in R such that f is positively discontinuous at x).

In Section 12, we introduce Brouwer’s Continuity Principle, an axiomatic as-
sumption one perhaps finds plausible after having seen and accepted the first argu-
ment in the proof of Theorem 11. Brouwer’s Continuity Principle proves: ¬WLPO,
see Theorem 12.

12. The Continuity Principle

Let f be a (‘full’) function from R to R. The statement that there is no point
where f is positively discontinuous is, constructively, a weak statement and not a
very useful one. The positive result that f is continuous at every point is obtained
from an axiomatic assumption first used by Brouwer.

12.1. Understanding Brouwer’s Continuity Principle. We first have to agree
upon some notation.

In the following definition, we use k, n0, n1, . . . , s, t, u, . . . as variables over the
set N.

Definition 10 (Coding finite sequences of natural numbers by natural numbers).
Let p : N → N be the function enumerating the primes: p(0) = 2, p(1) = 3, p(2) =
5, . . ..

For each k, for all n0, n1, . . . , nk−1, 〈n0, n1, . . . , nk−1〉 := p(k−1)·∏i<k p(i)
ni−1.

We also define: 〈 〉 := 0.
For all s, for each k, for all n0, n1, . . . , nk−1, if s = 〈n0, n1, . . . , nk−1〉, then

length(s) = k and, for all i < length(s), s(i) := ni.

For all k, ωk := {s | length(s) = k}.
For all k, l, for all s in ωk, for all t in ωl, s ∗ t is the element of ωk+l satisfying

∀i < k[s ∗ t(i) = s(i)] and ∀j < l[s ∗ t(k + j) = t(j)].

For all s, t, s ⊑ t↔ ∃u[s ∗ u = t] and s ⊏ t↔ (s ⊑ t ∧ s 6= t).

For all s, t, s ⊥ t↔ ¬(s ⊑ t ∨ t ⊑ s).

Definition 11. N := ωω is the set of all infinite sequences α = α(0), α(1), α(2), . . .
of non-negative integers. We use α, β, . . . ϕ, ψ, . . . as variables over N .

N is sometimes called Baire space.

For each α, for each m, αm := 〈α(0), α(1), . . . , α(m− 1)〉.
For all s, for all α, s ⊏ α↔ ∃n[αn = s] and s ⊥ α ↔ ¬(s ⊏ α).
For each n, we let n be the infinite sequence with the constant value n, that is,

for all i, n(i) = n.

Axiom 1 (Brouwer’s Continuity Principle, BCP). For every R ⊆ N × N,
if ∀α ∈ N∃n[αRn], then ∀α ∈ N∃m∃n∀β ∈ N [αm ⊏ β → βRn].

How may we convince each other that thia axiom is ‘reasonable’ and that we
should accept it as a rule for our common mathematical game?

We should ask what we mean by the ‘set’ N of all infinite sequences of natural
numbers. This ‘set’ is a kind of framework in which all kinds of infinite sequences
will grow, although only a very few of them have been realized up to now.

Cantor’s suggestion that a set is the result of taking together its (earlier con-
structed?) elements is a notion that does not make sense to us.
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An infinite sequence α may be given by a finite description or an algorithm that
enables us to find, one by one, the successive values α(0), α(1), . . . of α. Brouwer
calls such infinite sequences lawlike sequences.

As we saw in the first argument in the proof of Theorem 11, there are also infinite
sequences α that are not governed by a law. The successive values α(0), α(1), α(2), . . .
of α then are freely chosen, step by step. At any given moment, only a finite initial
part

(

α(0), α(1), . . . , α(n− 1)
)

of α is known. One may ask for further values, but,
having received the answers, one still only knows a finite initial part of α, albeit a
longer one.

There are intermediate possibilities. Having begun with choosing freely, step by
step, α(0), α(1), . . . α(n − 1) one may decide, to ‘freeze’ α and to determine the
remaining values by means of some rule or algorithm.

There is even a possibility I make α dependent on my future mathematical ex-
perience, by saying, for instance, α(n) = 0 if at the moments 0, 1, . . . , n, I did not
find a proof of the abc-conjecture, and α(n) = 1, if I did.

If we think of the set N as a framework making room for lawlike sequences as
well as for free-choice-sequences and sequences that are of some intermediate kind,
we are thinking of, what Brouwer calls, the full continuum.

Now assume R ⊆ N×N is given such that ∀α∃n[αRn]. Every infinite sequence α,
also a lawlike sequence α, may be thought of as being produced, step by step, by a
black box. At the moment we produce a number n such that αRn, only finitely many
values of α, say α(0), α(1), . . . , α(m− 1), will have become known. Clearly, for any
infinite sequence such that β(0) = α(0), β(1) = α(1), . . . and β(m− 1) = α(m− 1),
one may conclude: βRn.

Adopting Axiom 1 as a starting point for our further mathematical discourse,
we lay down a canonical meaning for expressions of the form ‘∀α∃n[αRn]’. Earlier,
we did so for expressions of the form ‘infinite’, ‘uncountable’ and ‘or’.

Theorem 12. BCP ⇒ ¬WLPO.

Proof. Assume WLPO i.e. ∀α[¬∀n[n < kα] ∨ ∀n[n < kα]], i.e.
∀α[¬∀n[α(n) = 0] ∨ ∀n[α(n) = 0]].
Consider α = 0 and, applying BCP, find m such that
either ∀β[0m ⊏ β → ¬∀n[β(n) = 0]] or ∀β[0m ⊏ β → ∀n[β(n) = 0]].
The first of these two statements is not true, consider: β = 0, and the second one
also fails, consider: β = 0m ∗ 1.

We thus obtain a contradiction. �

12.2. The (pointwise) continuity of functions from R to R.
In the next Definition, we introduce a function α 7→ uα associating to every α

in N a real number uα.

Definition 12. We let (r′0, r
′′
0 ), (r

′
1, r

′′
1 ), (r

′
2, r

′′
2 ), . . . be a fixed enumeration of all

pairs of rationals.
We define a mapping associating to each s 6= 0 a pair (u′s, u

′′
s ) of rationals, as

follows.
For each n, if 0 < r′′n − r′n ≤ 1, then (u′〈n〉, u

′′
〈n〉) = (r′n, r

′′
n), and,

if not, then (u′〈n〉, u
′′
〈n〉) = (0, 1).

For each s 6= 0, for each n, if u′s < r′n < r′′n < u′′s and
0 < r′′n − r′n ≤ 1

2 (u
′′
s − u′s), then (u′

s∗〈n〉, u
′′
s∗〈n〉) = (r′n, r

′′
n), and,

if not, then (u′
s∗〈n〉, u

′′
s∗〈n〉) = (23u

′
s +

1
3u

′′
s ,

1
3u

′
s +

2
3u

′′
s ).

For each α in N we let uα be the infinite sequence of pairs of rationals such that,
for all n, uα(n) = (u′α(n+1), u

′′
α(n+1)).
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Theorem 13. 19

(i) For every α, uα is a real number.
(ii) For every real number x, there exists α such that x =R uα.
(iii) BCP ⇒ Every function from R to R is continuous at every point x.

Proof. The proof of (i) and (ii) is left to the reader.

(iii) Let f be a real function and let a real x be given. We shall prove that f is
continuous at x.

Let p be given. We have to find m such that, for every real y, if |y − x| < 1
2m ,

then |f(y)− f(x)| < 1
2p .

Note: ∀α∃n[r′n < f(uα) < r′′n] and find α such that x =R uα.
Applying BCP, find q, n such that ∀β[αq ⊏ β → r′n < f(uβ) < r′′n].
Find i, j such that uα(n− 1) = (r′i, r

′′
i ) and uα(n) = (r′j , r

′′
j ).

Note: r′i <Q r
′
j <Q r

′′
j <Q r

′′
i .

Find m such that 1
2m < minQ(r

′
j −Q r

′
i, r

′′
i −Q r

′′
j ).

Note: for every real y, if |y − x| < 1
2m , then r′i < y < r′′i and there exists β such

that αn ⊏ β and y =R uβ and, therefore: r′n < f(uβ) < r′′n and r′n < f(y) < r′′n.
Conclude: for every real y, if |y−x| < 1

2m then |f(y)−f(x)| < r′′n− r′n < 1
2p . �

13. The Fan Theorem

13.1. Proving the Fan Theorem. The intuitionistic mathematician holds not
only that every function from [0, 1] tot R, like every function from R to R, see
Theorem 13(iii) is continuous at every point, but also that every function from
[0, 1] to R is continuous uniformly on [0, 1]. In order to obtain this result, she first
proves the Fan Theorem.

We need some definitions in order to formulate the Fan Theorem.

Definition 13. Let X ⊆ N and B ⊆ N.
B is a bar in X , notation: BarX (B), if and only if: ∀α ∈ X∃s ∈ B[s ⊏ α].

C := 2ω := {α | ∀n[α(n) < 2]}.
C is sometimes called Cantor space.

Bin := 2<ω := {s | ∀i < length(s)[s(i) < 2]}.
For each n, Binn := {s ∈ Bin | length(s) = n} = {s ∈ ωn | ∀j < n[s(j) < 2]}.

Definition 14. For each X ⊆ N , for each s, we define: X ∩ s := {α ∈ X|s ⊏ α}.
The Fan Theorem is the statement that every bar in C has a finite subbar.

Brouwer actually proved the more general but equivalent statement that every bar
in a so-called fan has a finite subbar. Here, B ⊆ N is called finite if and only if
∃u∀s[s ∈ B ↔ ∃i < length(u)[s = u(i)]].

We avoid defining the notion of a fan. For understanding the name of the
Theorem, it suffices to know every fan is a subset of N and that C is the prime
example of a fan.

The proof of the Fan Theorem turns on a philosophical claim.

Theorem 14 (Brouwer’s Fan Theorem). For every B ⊆ N, if BarC(B), then there
exists u such that ∀i < length(u)[u(i) ∈ B] and ∀α ∈ C∃i < length(u)[u(i) ⊏ α].

Proof. 20 Let B ⊆ N be given such that BarC(B).
Define, for every s in 2<ω, s is B-safe, or simply: safe, if and only if BarC∩s(B).

19See [48], [52, §2] and [65, §4].
20In [12] and [16], the Fan Theorem is obtained as a corollary of the ‘Bar Theorem’, in this

paper Theorem 19. We give an argument for the Fan Theorem inspired by Brouwer’s proof of the
Bar Theorem, like A. Heyting did in [36, §3.4.2].
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As BarC(B), 〈 〉 is safe.
We now ask the probably somewhat surprising question: ‘How is it possible we

know this?’ and, after some reflection, we come forward with the claim: there must
be a canonical proof of the fact: ‘〈 〉 is safe.’

What do we mean by: ‘a canonical proof’?
The canonical proof is an arrangement of statements of the form: ‘s is safe’.

The conclusion of the canonical proof is the statement: ‘〈 〉 is safe.’
The starting points of the canonical proof have the form:

s ∈ 2<ω and s ∈ B.
Therefore: s is safe.

There are only two kinds of reasoning steps: forward reasoning steps and back-
ward reasoning steps.

A forward reasoning step has the form:

s ∈ 2<ω, and s ∗ 〈0〉 is safe, and s ∗ 〈1〉 is safe.
Therefore: s is safe.

A backward reasoning step either has the form:

s ∈ 2<ω and s is safe.

Therefore: s ∗ 〈0〉 is safe.

or it has the form

s ∈ 2<ω and s is safe.

Therefore: s ∗ 〈1〉 is safe.

Clearly, the canonical proof may be visualized as a finite tree, with the statement
‘〈 〉 is safe’ at its bottom node and statements ‘s ∈ B’ at its top nodes. Each node
that is not a top node has either one or two upstairs neighbours.

One easily sees that all resoning steps are sound and that a canonical proof of
‘〈 〉 is safe’ is indeed a proof of ‘〈 〉 is safe’.

Our claim gives expression to the feeling that, if we know: ‘BarC(B)’, this
knowledge must be based upon an orderly organization of elementary pieces of
information of the form: ‘s ∈ B’.

Now, trusting our claim, let us take a canonical proof of: ‘〈 〉 is safe.’ We are
going to use it in order to build another proof.

Define, for every s in 2<ω, s is supersafe if and only if there exists u such that
∀i < length(u)[u(i) ∈ B] and ∀α ∈ C ∩ s∃i < length(u)[u(i) ⊏ α].

Note that the conclusion we are after is: ‘〈 〉 is supersafe.’
Replace, in the canonical proof of ‘〈 〉 is safe’, every statement ‘s is safe’ by the

statement ‘s is supersafe’.
The result will be another valid proof.
Why?

First, the new starting points are sound: if s ∈ 2<ω and s ∈ B, define: u := 〈s〉
and note: u(0) ∈ B and ∀α ∈ C ∩ s[u(0) ⊏ α].

Then, the new forward reasoning steps are sound.
For assume: s ∈ 2<ω and both s ∗ 〈0〉 and s ∗ 〈1〉 are supersafe.
Find u0, u1 such that: for each j < 2, ∀i ≤ length(uj)[uj(i) ∈ B] and

∀α ∈ C ∩ s ∗ 〈j〉∃i < length(uj)[uj(i) ⊏ α].
25



Define u := u0 ∗ u1 and note
∀i < length(u)[u(i) ∈ B] and ∀α ∈ F ∩ s∃i < length(u)[u(i) ⊏ α],
that is: s is supersafe.

Also, the new backward reasoning steps are sound.
For assume: s ∈ 2<ω and s is supersafe.
Find u such that
∀i < length(u)[u(i) ∈ B] and ∀α ∈ C ∩ s∃i < length(u)[u(i) ⊏ α].
Note: for both j < 2, C ∩ s ∗ 〈j〉 ⊆ C ∩ s and s ∗ 〈j〉 is supersafe.
Conclude: our new proof is sound and its conclusion is true, i.e. 〈 〉 is supersafe.

�

Generalizing the proof of Theorem 14 we obtain the following conclusion:

Theorem 15 (Bar Induction in C). Let B ⊆ N be a bar in C.
(i) Assume B ⊆ C ⊆ 2<ω and, for all s in 2<ω,

s ∈ C if and only if ∀j < 2[s ∗ 〈j〉 ∈ C]. Then 〈 〉 ∈ C.
(ii) Assume B ⊆ C ⊆ 2<ω and, for all s in 2<ω,

if ∀j < 2[s ∗ 〈j〉 ∈ C], then s ∈ C. Then 〈 〉 ∈ C.

Proof. (i) Define, for each s in 2<ω, s is safe if and only if BarC∩s(B). In the
canonical proof of: ‘〈 〉 is safe’, replace every statement ‘s is safe’ by ‘s ∈ C’. The
result will be a proof of: ‘〈 〉 ∈ C’.

(ii) Define C∗ := {s ∈ 2<ω[∃t ⊑ s[t ∈ C]}.
Note: for all s in 2<ω, if s ∈ C∗, then ∀j < 2[s ∗ 〈j〉 ∈ C∗].
Now assume: s ∈ 2<ω and ∀j < 2[s ∗ 〈j〉 ∈ C∗]. We may distinguish two cases.
Case 1. ∀j < 2[s ∗ 〈j〉 ∈ C]. Then s ∈ C ⊆ C∗.
Case 2. ∃t ⊑ s[t ∈ C]. Then s ∈ C∗.
We thus see: for all s in 2<ω, s ∈ C∗ if and only if ∀j < 2[σ(s ∗ 〈j〉 ∈ C∗].
Applying (i), we conclude: 〈 〉 ∈ C∗, and: 〈 〉 ∈ C. �

Theorem 15(ii) shows that, in the canonical proof of BarC(B), introduced in the
proof of Theorem 14, the backward steps might have been left out. They may not
be left out in the canonical proof of the Bar Theorem, the infinitary analog of the
Fan Theorem, see Subsection 15.2.

13.2. Every function from [0, 1] to R is uniformly continuous. Brouwer’s
Continuity Principle implies that every function from [0, 1] to R, like every function
from R to R, see Theorem 13(iii), is continuous at every point. Using the Fan
Theorem, we now prove that every function from [0, 1] to R is even continuous
uniformly on [0, 1]. This is historically the first application of the Fan Theorem,
see [12].

In the next Definition, we introduce a function α 7→ cα associating to every α in
C a real number cα in [0, 1].

Definition 15. We define a mapping associating to every s in 2<ω a pair (as, bs)
of rationals such that (a〈 〉, b〈 〉) = (0, 1) and for each s in 2<ω,

(as∗〈0〉, bs∗〈0〉) = (as,
1
3as +

2
3bs) and (as∗〈1〉, bs∗〈1〉) = (23as +

1
3 bs, bs).

For each α in C we let cα be the real x such that, for each n, x(n) = (aαn, bαn).

Theorem 16 (Uniform-Continuity Theorem). Every function f from [0, 1] to R is
continuous uniformly on [0, 1], i.e.

∀p ∈ N∃m ∈ N∀x ∈ [0, 1]∀y ∈ [0, 1][|x− y| < 1

2m
→ |f(x)− f(y| < 1

2p
].
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Proof. Let f be a function from [0, 1] to R and let p be given. We want to find m
such that ∀x ∈ [0, 1]∀y ∈ [0, 1][|x− y| < 1

2m → |f(x)− f(y| < 1
2p ].

Let B be the set of all s in 2<ω such that, for all x, y in [as, bs], |f(x)−f(y)| < 1
2p .

We first prove that B is a bar in C, i.e. BarC(B).
Let α in C be given. As f is continuous at cα, see Theorem 13(iii), find m

such that ∀y ∈ [0, 1][|cα − y| < 1
2m → |f(cα) − f(y| < 1

2p+1 ]. Find n such that

bαn − aαn <
1
2m and note: αn ∈ B.

We thus see that every α in C has an initial part in B.

Now let C be the set of all s in 2<ω such that, for some m,
for all x, y in [as, bs], if |x− y| < 1

2m , then |f(x)− f(y)| < 1
2p .

Note: B ⊆ C.

Let s in 2<ω be given such that ∀i < 2[s∗〈i〉 ∈ C]. We are going to prove: s ∈ C.
First find m0 such that, for all x, y in (as∗〈0〉, bs∗〈0〉) = (as,

1
3as+

2
3bs), if |x−y| <

1
2m0

, then |f(x)−f(y)| < 1
2p . Then findm1 such that, for all x, y in (as∗〈1〉, bs∗〈1〉) =

(23as +
1
3bs, bs), if |x− y| < 1

2m1
, then |f(x)− f(y)| < 1

2p .
Now find n := length(s).
Note: bs − as = (23 )

n, and, for all x, y in [as, bs], if |x − y| < 1
3 (

2
3 )

n, then either

x, y both are in [as,
1
3as +

2
3bs] or x, y both are in [ 23as +

1
3bs, bs].

Find m such that m ≥ m0 and m ≥ m1 and 1
2m < 1

3 (
2
3 )

n and note: for all x, y

in [as, bs], if |x− y| < 1
2m , then |f(x)− f(y)| < 1

2p . We thus see: s ∈ C.
Clearly, for all s in Bin, if ∀i < 2[s ∗ 〈i〉 ∈ C], then s ∈ C.

Using Theorem 15(ii), conclude: 〈 〉 ∈ C, that is:
∃m∀x ∈ [0, 1]∀y ∈ [0, 1][|x− y| < 1

2m → |f(x)− f(y)| < 1
2n ]. �

13.3. The failure of the Fan Theorem in computable analysis. In the next
Theorem, we use some notations introduced in Subsection 8.4.

Theorem 17 (Kleene’s Alternative21). There exists B∗ ⊆ N such that

(i) Every computable α in C has an initial part in B, i.e. ∃s ∈ B∗[s ⊏ α].
(ii) Every finite subset of B positively fails to be a bar in the set

{α ∈ C | α is computable}, i.e.
for all u, p, if length(u) = p > 0 and ∀i < p[u(i) ∈ B∗],
then there exists a computable α in C such that ∀i < p[u(i) ⊥ α].

(iii) B∗ is an algorithmically decidable subset of N.

Proof. First, let B be the set of all s in Bin such that, for some e, length(s) = e+1
and ∀i ≤ e∃z[T (e, i, z) ∧ U(z) = s(i)].

〈 〉 /∈ B and, for every e, there is at most one s in B such that length(s) = e+1.
Let α be a computable element of C. Find e such that α = ϕe.

Note: α(e + 1) = ϕe(e + 1) ∈ B.

Let u, p be given such that length(u) = p > 0 and ∀n < p[u(n) ∈ B].
We may assume: 0 < length

(

u(0)
)

< length
(

u(1)
)

< . . . < length
(

u(p − 1)
)

and, therefore, ∀n < p[length
(

u(n)
)

> n]. Define α such that, for each n < p,

α(n) = 1 −
(

u(n)
)

(n), and, for each n ≥ p, α(n) = 0. Note: α is computable and
∀n < p[u(n) ⊥ α].

Unfortunately, B is not an algorithmically decidable subset of N.
We therefore introduce another subset of N.
Let B∗ be the set of all s in Bin such that, for some e < length(s),

∀i ≤ e∃z < length(s)[T (e, i, z) ∧ U(j) = s(i)], and, therefore, s(e+ 1) ∈ B.
Note that B∗ is an algorithmically decidable subset of N.

21Kleene discovered this theorem in 1950, see [39] and [41, Lemma 9.8].
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Let α be a computable element of C. Find e such that α = ϕe. Find n > e such
that ∀i ≤ e∃z < n[T (e, i, z) ∧ U(z) = s(i)] and conclude: αn ∈ B∗.

We thus see that every computable α in C has an initial part in B∗.
Let u, p be given such that length(u) = p > 0 and ∀n < p[u(n) ∈ B∗]. Find v

such that length(v) = p and ∀n < p[v(n) ⊑ u(n) ∧ v(n) ∈ B]. Find a computable
α in C such that ∀n < p[v(n) ⊥ α] and conclude ∀n < p[u(n) ⊥ α].

We thus see that every finite subset of B∗ positively fails to be a bar in
{α ∈ C | α is computable}. �

The subject of computable analysis starts from the assumption that every α in
N is given by an algorithm, i.e., if one uses Church’s Thesis, by a Turing-algorithm.
One may study this subject from an intuitionistic point of view. As appears from
Theorem 17, computable analysis is dramatically different from intuitionistic anal-
ysis. For instance, there exists a real function from [0, 1] to R that is everywhere
continuous but positively unbounded. Many more such results may be found in
[60].

14. The Determinacy Theorem as an equivalent of the Fan Theorem

The Uniform-Continuity Theorem, Theorem 16, is the first application of the
Fan Theorem, and may be called the goal for which it was devised. In this Section
we want to introduce to the reader to a second and more recent application, an
application in the theory of games.

In the first two Subsections we consider two kinds of two-move-games for Players
I, II and define when such games are constructively determinate from the viewpoint
of Player I. Games from the first Subsection may fail to have this property but we
will see that the Fan Theorem proves that the games from the second Subsection
always have it. In the third Subsection we prove that, conversely, this result implies
an important case of the Fan Theorem. In the fourth Subsection we introduce the
intuitionistic Determinacy Theorem.

14.1. Games in 2× ω. For every C ⊆ 2× ω, we introduce a game G2×ω(C).
There are two players, Player I and Player II. Every play goes a follows. Player
I chooses i in {0, 1}, thereafter Player II chooses n in ω and the play is finished.
Player I wins the play if and only if 〈i, n〉 ∈ C. Player II tries to prevent that
Player I wins the play.
Clearly, Player I has a winning first move if and only if ∃i∀n[〈i, n〉 ∈ C]. A strategy
for Player II, on the other hand, is a pair of numbers 〈p0, p1〉, and the strategy is
winning if ∀i < 2[〈i, pi〉 /∈ C].

The game G2×ω(C) is called determinate if and only if either Player I has a
winning first move or Player II has a winning strategy. As one may conjecture, it
may happen that this decision can not be taken in a constructive way. We will see
this in a moment.

We now define: the game G2×ω(C) is determinate from the viewpoint of Player
I if and only if:

If Player II does not have a winning strategy in the constructively
strong sense: ∀p0∀p1[〈0, p0〉 ∈ C ∨ 〈1, p1〉 ∈ C], then Player I has
a winning first move, i.e. ∃i < 2∀n[〈i, n〉 ∈ C]

and ask ourselves the question: is the game Gω×2(C) always determinate from the
viewpoint of Player I?

The following example shows that, sometimes, it is not.
Define C := {〈i, n〉 | k99 ≤ n→ ∃l[k99 = 2l+ i]}.
Let p0, p1 be given. If k99 ≤ p0, one may find i < 2 and l such that k99 = 2l + i
and 〈i, pi〉 ∈ C. If p0 < k99, then 〈0, p0〉 ∈ C. We thus see Player I has an answer

28



to any given strategy of Player II.
On the other hand, if Player I has a winning first move, then ∃i < 2∀n[〈i, n〉 ∈ C]
and ∃i < 2[∃j[j = k99] → ∃n[2n+i = k99]], i.e. ¬∃n[2n = k99] ∨ ¬∃n[2n+1 = k99],
a reckless or hardy statement.

Note that the statement: ‘the game G2×ω(C) is determinate’ is also reckless, as,
for every C ⊆ 2× ω, if G2×ω(C) is determinate, then G2×ω(C) is determinate from
the viewpoint of Player II.

14.2. Games in ω × 2. 22 For every C ⊆ ω × 2, we introduce a game Gω×2(C).
There are again two players, Player I and Player II. Every play goes a follows.
Player I chooses n in ω, thereafter Player II chooses i in {0, 1} and the play is
finished. Player I wins the play if and only if 〈n, i〉 ∈ C. Player II tries to prevent
that Player I wins the play. Clearly, Player I has a winning first move if and only if
∃n∀i < 2[〈n, i〉 ∈ C]. A strategy for Player II is an element τ of C and the strategy
τ is winning if and only if ∀n[〈n, τ(n)〉 /∈ C].

The game Gω×2(C) is called determinate if and only if either Player I has a
winning first move or Player II has a winning strategy.

Considering the example C := {〈n, i〉 ∈ ω × 2 | n = k99], we see that it may
happen that the statement: ‘Gω×2(C) is determinate’ is a reckless one.

We now define: the game Gω×2(C) is determinate from the viewpoint of Player
I if and only if

If Player II does not have a winning strategy in the strong sense:
∀τ ∈ C∃n[〈n, τ(n)〉 ∈ C], then Player I has a winning first move,
i.e. ∃n∀i < 2[〈n, i〉 ∈ C].

The Fan Theorem proves that, for every C ⊆ ω × 2, the game Gω×2(C) is
determinate from the viewpoint of Player I.

For assume ∀τ ∈ C∃n[〈n, τ(n)〉 ∈ C].
Define B :=

⋃

m{t ∈ Binm | ∃n < m)[〈n, t(n)〉 ∈ C]} and note: B is a bar in
C. Applying the Fan Theorem, find u such that ∀i < length(u)[u(i) ∈ B] and
∀τ ∈ C∃i < length(u)[u(i) ⊏ τ ]. Find m such that ∀i < m[length(u(i)) < m] and
conclude: ∀t ∈ Binm∃n < m[〈n, t(n)〉 ∈ C].
We now prove, by backwards induction:
for each j ≤ m, either ∀t ∈ Binj∃n < j[〈n, t(n)〉 ∈ C] or ∃n∀i < 2[〈n, i〉 ∈ C].
This clearly holds if j = m.
Now assume j + 1 ≤ m and ∀t ∈ Binj+1∃n < j + 1[〈n, t(n)〉 ∈ C]. For every t in
Binj, one may consider t ∗ 〈0〉 and conclude: ∃n < j[〈n, t(n)〉 ∈ C] or 〈j, 0〉 ∈ C.
Therefore: either 〈j, 0〉 ∈ C or ∀t ∈ Binj∃n < j[〈n, t(n)〉 ∈ C]. For similar
reasons, either 〈j, 1〉 ∈ C or ∀t ∈ Binj∃n < j[〈n, t(n)〉 ∈ C]. Conclude: either:
∀i < 2[〈j, i〉 ∈ C] and ∃n∀i < 2[〈n, i〉 ∈ C] or: ∀t ∈ Binj∃n < j[〈n, t(n)〉 ∈ C].
Repeating this step m times we find the conclusion: ∃n∀i < 2[〈n, i〉 ∈ C].

14.3. Recovering the Fan Theorem. Let us consider the result of the last sub-
section:

(#) For every C ⊆ ω × 2,
if ∀τ ∈ C∃n[〈n, τ(n)〉 ∈ C], then ∃n[〈n, 0〉 ∈ C ∧ 〈n, 1〉 ∈ C].

We prove that this statement implies an important case of the Fan Theorem. The
Fan Theorem is the statement that every B ⊆ N that is a bar in C has a finite
subset that is a bar in C. We prove that # implies this statement for the case that
B is a decidable subset of N.

Assume (#) and let B ⊆ N be given such that BarC(B) and one may decide,
for each n, n ∈ B or n /∈ B. For all n, we define: Bn := {s ∈ B | s < n}.

22See [49, §4].
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We want to prove the statement QED := ∃n[BarC(Bn)]
23.

We let C be the set of all pairs 〈s, i〉 such that either : QED or : BarC∩s∗〈i〉(Bn)
and not BarC∩s∗〈1−i〉(Bn). Note that, for each s in Bin, if both s ∗ 〈0〉 and s ∗ 〈1〉
are in C, then QED. Also note that C, like B, is a decidable subset of N.
Let τ in C be given. Find α in C such that ∀i[α(i) = τ(αi)]. Find n such that
αn ∈ B and define m := αn+ 1. Note: BarC∩αn(Bm).
Note that, for each i, if i+1 ≤ n and BarC∩α(i+1)(Bm), then either : BarC∩α(i)(Bm)
or : ¬BarC∩α(i)∗〈1−α(i)〉(Bm) and 〈αi, α(i)〉 ∈ C. Using backwards induction,
starting from the fact: BarC∩αn(Bm), we prove:
for each i ≤ n, either BarC∩αi(Bm) or ∃j < n[〈αj, α(j)〉 ∈ C].
Taking i = 0, we find: either BarC(Bm) or ∃j[〈αj, α(j)〉 ∈ C], i.e. either QED or
∃j[〈αj, τ(αj)〉 ∈ C]. In both cases, one may conclude: ∃s[〈s, τ(s)〉 ∈ C].

We thus see: ∀τ ∈ C∃s[〈s, τ(s)〉 ∈ C]. Using (#), we conclude:
∃s[s ∗ 〈0〉 ∈ C ∧ s ∗ 〈1〉 ∈ C], and, therefore: QED, i.e. ∃n[BarC(Bn)].

This shows that every decidable subset B of N that is a bar in C has a finite
subset that is a bar in C.
14.4. The Intuitionistic Determinacy Theorem.

We now study games with infinitely many moves rather than two moves only.

Definition 16. (ω × 2)ω := {α | ∀n[α(2n+ 1) < 2]}.
For each σ, for each α ∈ (ω × 2)ω, α ∈I σ := ∀n[α(2n) = σ

(

α(2n)
)

]

For each τ in C, for each α in (ω×2)ω, α ∈II τ := ∀n[α(2n+1) = τ
(

α(2n+1)
)

].

For every X ⊆ (ω×2)ω, we introduce a game G(ω×2)ω (X ). There are two players,
Player I and Player II. Every play takes infinitely many moves and goes as follows.
Player I chooses n0 in ω, thereafter Player II chooses i0 in 2 = {0, 1}, then Player
I chooses n1 in ω and, thereafter, Player II chooses i1 in 2, and so on. Player I
wins the play if the infinite sequence n0, i0, n1, i1, . . . is in X . Player II tries to
prevent that Player I wins the game.

Theorem 18 (Intuitionistic Determinacy Theorem). For all X ⊆ (ω × 2)ω, if
∀τ ∈ C∃α ∈ (ω × 2)ω[α ∈II τ ∧ α ∈ X ], then ∃σ∀α ∈ (ω × 2)ω[α ∈I σ → α ∈ X ].

The Theorem is good news for Player I. Suppose X ⊆ (ω × 2)ω is such that
Player I is able, once Player II has told her the strategy τ she intends to follow,
to find a play following τ that is in X . She then may devise a strategy σ, such that
every play following σ is in X . Using σ, Player I can do without information about
the strategy followed by Player II.

We will not give the proof of Theorem 1824. As in Subsection 14.2, the Fan
Theorem plays a key rôle in the argument. From Subsection 14.1, one may see it is
crucial for Theorem 18 that, in (ω × 2)ω, Player II has, at each one of her moves,
only 2 choices. The theorem extends to the case that Player II has, at each one of
her moves, finitely many choices.

15. Brouwer’s Thesis

15.1. The Principle of Bar Induction. The key point in the proof of the next
Theorem is a philosophical assumption25 one might call Brouwer’s Thesis (on bars
in N )26.

23We read QED not in its usual sense: ‘quod erat demonstrandum, what had to be proven’
but as: ‘quod est demonstrandum, what has to be proven’.

24See [47, Chapter 16], [59] and [61, Section 9].
25The theorem better might be called an axiom.
26For a discussion, see [57].
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Theorem 19 (Bar Induction). Let B ⊆ N be given such that BarN (B). Let
C ⊆ N be given such that B ⊆ C and, for all s, s ∈ C if and only if ∀n[s∗ 〈n〉 ∈ C].
Then 〈 〉 ∈ C.

Proof. Let B ⊆ N be given such that BarN (B).
Define, for every s, s is B-safe, or simply: safe, if and only if BarN∩s(B).
Note: 〈 〉 is safe.
There must exist a canonical proof of the fact:

〈 〉 is safe.

The conclusion of the canonical proof is: ‘〈 〉 is safe.’
The starting points of the canonical proof have the form:

s ∈ B.
Therefore: s is safe.

There are two kinds of reasoning steps, forward steps and backward steps.

A forward reasoning step has infinitely many premises and is of the following
form:

s ∗ 〈0〉 is safe, s ∗ 〈1〉 is safe, s ∗ 〈2〉 is safe, . . .
Therefore: s is safe.

A backward reasoning step has the form:

s is safe.

Therefore: s ∗ 〈n〉 is safe.

The canonical proof is not a finite tree but an infinite one. The canonical proof
can not be written out explicitly as a finite text.

Let C ⊆ N be given such that B ⊆ C and, for all s, s ∈ C if and only if
∀n[s ∗ 〈n〉 ∈ C].

Now replace in the canonical proof every statement ‘s is safe’ by the statement
‘s ∈ C’. The result will be another valid proof.

Why?
As B ⊆ C, the new starting points are sound.

As, for every s, if ∀n[s ∗ 〈n〉 ∈ C], then s ∈ C27, the new forward reasoning steps
are sound.

As, for every s, for every n, if s ∈ C, then s ∗ 〈n〉 ∈ C28, the new backward
reasoning steps are sound.

We must conclude: the new conclusion is true, that is: 〈 〉 ∈ C. �

15.2. One needs backward steps.

Theorem 20 (Kleene’s example29). There exist B ⊆ C ⊆ N such that BarN (B)
and, for all s, if ∀n[s ∗ 〈n〉 ∈ C], then s ∈ C, while the statement ‘〈 〉 ∈ C’ is a
reckless one.

27C ⊆ N with this property is called inductive.
28C ⊆ N with this property is called monotone.
29See [41, §7.14].
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Proof. Let B consist of all s such that
either ∃n < k99[s = 〈n〉] or s = 〈 〉 and ∃n[n = k99] ∨ ∀n[n < k99].

Let α be given. Either α(0) < k99 and α1 ∈ B, or α(0) ≥ k99 and 〈 〉 = α0 ∈ B.
We thus see: BarN (B).

Let C coincide with B.
For all s, if, for all n, s ∗ 〈n〉 ∈ C, then s = 〈 〉 and ∀n[n < k99] and 〈 〉 ∈ C.
The statement ‘〈 〉 ∈ C’ is equivalent to ‘∃n[n = k99] ∨ ∀n[n < k99]’, and is

reckless. �

Consider the set B mentioned in the proof of Theorem 20. Note that every
canonical proof of ‘〈 〉 is (B-)safe’ must use backward steps. The last step in a
canonical proof of ‘〈 〉 is (B-)safe’ must be a forward step: 〈 〉 is safe because: 〈0〉
is safe, 〈1〉 is safe, 〈2〉 is safe, . . .. For each n < k99 the conclusion: 〈n〉 is safe
follows by a basic step from: 〈n〉 ∈ B. For each n ≥ k99 the conclusion: 〈n〉 is safe
follows by a backward step from: 〈 〉 is safe and that follows in its turn by a basic
step from: 〈 〉 ∈ B (as n ≥ k99).

We thus see that, in this particular case, the backward steps can not be missed.
In the case of the Fan Theorem, Theorem 14, as we learned from Theorem 15, one
might have claimed there is a canonical proof using only forward reasoning steps.

16. Open Induction in [0, 1]

Brouwer’s main application of the Principle of Bar Induction, Theorem 19, is the
Fan Theorem. We now give an example of a stronger consequence of the Principle.

Definition 17. We let (r′0, r
′′
0 ), (r

′
1, r

′′
1 ), (r

′
2, r

′′
2 ), . . . be a fixed enumeration of all

pairs of rationals.
For each α, Gα := {x ∈ R|∃n[r′

α(n) < x < r′′
α(n)]}.

For each a, Ga := {x ∈ R | ∃n < length(a)[r′
a(n) < x < r′′

a(n)]}.
G ⊆ R is open if and only if, for some α, G = Gα.

For all x, y in R such that x < y, we define [x, y) := {z ∈ R | x ≤R z <R y}.
G ⊆ R is progressive in [0, 1] if and only if ∀x ∈ [0, 1][[0, x) ⊆ G → x ∈ G].

Theorem 21 (Principle of Open Induction in [0, 1]).
For every open G ⊆ R, if G is progressive in [0, 1], then [0, 1] ⊆ G.
Although the theorem may be new to the reader, É. Borel in fact introduced

and used it when he proved, in 1895, see [6], what is now called the Heine-Borel
Theorem:

for each α, if [0, 1] ⊆ Gα, then ∃n[[0, 1] ⊆ Gαn].

Borel’s argument may be described as follows. Let α be given such that [0, 1] ⊆ Gα.
Define H := {y ∈ R | ∃n[[0, y] ⊆ Gαn]}. Note that H is open and progressive in
[0, 1]. Applying the principle of Open Induction on [0, 1], conclude: 1 ∈ H and
∃n[[0, 1] ⊆ Gαn].

How does the classical mathematician convince herself of the validity of the
Principle of Open Induction in [0, 1]?

Given an open G ⊆ R that is progressive in [0, 1], she starts defining an infinite
sequence x0, x1, . . . of reals. She defines x0 := 0 and notes x0 ∈ G. She then finds
x1 > x0 such that [0, x1) ⊆ G. If x1 ≥ 1, she is done and defines, for each n ≥ 1,
xn = 1. If not, she observes: x1 ∈ G and finds x2 > x1 such that [0, x2) ⊆ G. If
x2 ≥ 1 she is done and defines, for each n ≥ 2, xn = 1. If not, she observes: x2 ∈ G
and finds x3 > x2 such that [0, x3) ⊆ G. And so on. She thus finds an infinite
sequence 0 ≤ x0 ≤ x1 ≤ x2 ≤ . . . of reals such that, for each n, [0, xn) ⊆ G and:
xn+1 = xn if and only if xn = 1. The infinite non-decreasing sequence x0, x1, . . . is
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bounded by 1 and thus converges, to, say, xω+0 = xω. Then: xω ∈ G as [x, xω) ⊆ G.
If xω ≥ 1, she is done and defines, for each n ≥ 0, xω+n = 1. If not, she starts
again and finds suitable xω+1, xω+2, . . . such that, for each n, [0, xω+n) ⊆ G and
xω+n ≤ xω+n+1 and: xω+n+1 = xω+n if and only if xω+n ≥ 1. She then considers
xω·2 = xω+ω := limn xω+n. She has inexhaustible energy and, if needed, finds xω·3

xω·4, . . . xω·ω, . . .. She thus continues her infinite sequence through the countable
ordinals.

She believes this procedure will come to an end, that is: there must exist a
countable ordinal β such that xβ = 1. She argues a follows. For each k > 0 there
can be only k countable ordinals α such that xα + 1

k
< xα+1. Therefore, there are

only countably many countable ordinals such that xα < xα+1. Find a countable
ordinal β that lies beyond every countable ordinal α such that xα < xα+1. Then
xβ = xβ+1 and: xβ = 1.

Borel argued in this way, proudly using the countable ordinals introduced by
Cantor some 20 years earlier, see [34].

This argument, from a constructive point of view, is quite fantastic. We parted
company with the classical mathematician already at the point where she believed
to find xω. It is not true, constructively, that every non-decreasing bounded infinite
sequence of reals has a limit: consider the sequence defined by: xn = 0 if n < k99
and xn = 1 if k99 ≤ n. 30

The classical mathematician may propose a second line of thought. She might use
a classical mathematician’s finest weapon31, as follows. Assume G 6= [0, 1]. Consider
y := inf([0, 1] \ G). As G is open, y /∈ G, but also [0, y) ⊆ G. Contradiction.

Again, we can not partake in her joy. It is not clear that we may construct y.
And, of course, it is not clear that, having proved: ¬∃x ∈ [0, 1][x /∈ G], we might
conclude: ∀x ∈ [0, 1][x ∈ G].

In order to make the problem more pictorial, let us define: Achilles32 arrives at
x if and only if [0, x) ⊆ G.

How might we, constructive mathematicians, convince ourselves that Achilles
arrives at 1? We should first prove that Achilles will arrive at 1

2 , but it does not

seem easier to prove that Achilles will arrive at 1
2 than to prove that he will arrive

at 1.

Proof. 33 Let G ⊆ R be open and progressive in [0, 1]. Find α such that G = Gα.
We define a mapping s 7→ (cs, ds) that associates to every s in N a pair of rationals.
The elements s of N are thought of as coding finite sequences of natural numbers,
see Subsection 12.1, Definition 10.

(i) (c〈 〉, d〈 〉) := (0, 1).

(ii) For each s, for each n, find out if ∀x ∈ [0, c(s)+d(s)
2 ]∃i < n[r′α(i) < x < r′′α(i)].

34

If so, define (cs∗〈n〉, ds∗〈n〉) = ( cs+ds

2 , ds), and

if not, define (cs∗〈n〉, ds∗〈n〉) = (cs,
cs+ds

2 ).

Note: for each s, (cs∗〈0〉, ds∗〈0〉) = (cs,
cs+ds

2 ).
Also note: for each s, ∃n∀x ∈ [0, cs)∃i < n[r′

α(i) < x < r′′
α(i)].

One proves this by induction on the length of s.

30Assume c := limn xn exists. If c > 0, then ∃n[n = k99] and, if c < 1, then ∀n[n < k99].
31See Section 4.
32See [52, p. 338].
33The theorem was found and proven by Thierry Coquand, in 1997. We were discussing then

the problem if positive contrapositions of the minimal bad sequence arguments used in [43] might
be intuitionistically true, see [54, §11].

34Note that this a decidable proposition.
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For each β in N , we let xβ be the real number such that, for each n,
xβ(n) = (cβn, dβn). Note: for each β, [0, xβ) ⊆ G and thus xβ ∈ G.

Let B be the set of all s such that ∃n∀x ∈ [0, ds]∃i < n[r′
α(i) < x < r′′

α(i)].

Let β be given. Using the fact: xβ ∈ G, find q such that r′
α(q) < xβ < r′′

α(q).

Find m such that r′
α(q) < cβm < dβm < r′′

α(q).

Find p such that ∀x ∈ [0, cβm]∃i < p[r′
α(i) < x < r′′

α(i)].

Define n := max(p, q + 1).
Conclude: ∀x ∈ [0, dβm]∃i < p][r′

α(i) < x < r′′
α(i)]] and: βm ∈ B.

We thus see: BarN (B), i.e.: B is a bar in N .

Note: B is monotone, i.e.: for all s, if s ∈ B, then ∀n[s ∗ 〈n〉 ∈ B].

We now prove that B is also inductive.
Let s be given such that ∀n[s ∗ 〈n〉 ∈ B]. Then, in particular: s ∗ 〈0〉 ∈ B.

Note ds∗〈0〉 =
cs+ds

2 and find n such that ∀x ∈ [0, cs+ds

2 ]∃i < n[r′α(i) < x < r′′α(i)].

Conclude: (cs∗〈n〉, ds∗〈n〉) = ( cs+ds

2 , ds). Using the fact: s ∗ 〈n〉 ∈ B, find m such
that ∀x ∈ [0, ds∗〈n〉]∃i < m[r′

α(i) < x < r′′
α(i)].

Note: ds∗〈n〉 = ds and conclude: s ∈ B.
We thus see: if ∀n[s ∗ 〈n〉 ∈ B], then s ∈ B.

As BarN (B) and ∀s[s ∈ B ↔ ∀n[s∗ 〈n〉 ∈ B]], we may conclude, using Theorem
19: 〈 〉 ∈ B, that is: ∃n∀x ∈ [0, 1]∃i < n[r′

α(i) < x < r′′
α(i)] and: [0, 1] ⊆ G. �

The Principle of Open Induction in [0, 1] plays a large rôle in [62].

17. Brouwer’s Thesis, again

17.1. Using stumps. In intuitionistic analysis, stumps play the rôle fulfilled by
countable ordinals in classical analysis.

Definition 18. For every s in N, for every A ⊆ N, s ∗A := {s ∗ t | t ∈ A}.
Stp, a collection of subsets of N, called stumps, is defined as follows.

(i) ∅ ∈ Stp, and
(ii) for every infinite sequence S0, S1, . . . of elements of Stp, the set

S := {〈 〉} ∪ ⋃

n∈N

〈n〉 ∗ Sn is again an element of Stp, and

(iii) nothing more: every element of Stp is obtained by starting from ∅ and apply-
ing the operation mentioned in (ii) repeatedly.

Note that, for every stump S, either S = ∅ or 〈 〉 ∈ S.

Definition 19. For every A ⊆ N, for every n, A ↾ 〈n〉 := {s | 〈n〉 ∗ s ∈ A}.
For every non-empty stump S, for every n, S ↾ 〈n〉 is again a stump.
S ↾ 〈n〉 is called the n-th immediate substump of S.

Axiom 2 (Principle of Induction on Stp). Let P ⊆ Stp be given. If ∅ ∈ P , and
for every non-empty stump S, if ∀n[S ↾ 〈n〉 ∈ P ], then S ∈ P , then Stp = P .

Theorem 22 (Brouwer’s Thesis on bars in N 35). For every B ⊆ N such that
BarN (B), there exists a stump S such that BarN (S ∩B).

Proof. Let B ⊆ N be given such that BarN (B).
Let C be the set of all s such that, for some stump S,
∀α∃n[αn ∈ S ∧ ∃t ⊑ s ∗ αn[t ∈ B]].

Let s be given such that s ∈ B. Define S := {〈 〉} and note:
∀α[α0 ∈ S ∧ s ∗ α0 ∈ B].

35See [47, §13.0], [57, Theorem 1.1] and [58, Theorem 2].
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We thus see: B ⊆ C.

We now prove that C is inductive.
Let s be given such that ∀m[s ∗ 〈m〉 ∈ C].
Find an infinite sequence S0, S1, . . . of stumps such that

∀m∀α∃n[αn ∈ Sm ∧ ∃t ⊑ s ∗ 〈m〉 ∗ αn[t ∈ B]]. Define a non-empty stump S such
that, for each m, S ↾ 〈m〉 = Sm and conclude: ∀α∃n[αn ∈ S ∧ ∃t ⊑ s ∗ αn[t ∈ B]
and: s ∈ C.

We thus see: for each s, if ∀m[s ∗ 〈m〉 ∈ C], then s ∈ C.

Finally, we show that C is monotone.
Let s in C be given.
Find a stump S such that ∀α∃n[αn ∈ S ∧ ∃t ⊑ s ∗ αn ∈ B]].
Let m be given and distinguish two cases:
Case (1). S ↾ 〈m〉 6= ∅. Then ∀α∃n[αn ∈ S ↾ 〈m〉 ∧ ∃t ⊑ s ∗ 〈m〉 ∗ αn ∈ B]],

and: s ∗ 〈m〉 ∈ C.
Case (2). S ↾ 〈m〉 = ∅. Define T := {〈 〉} and note:

∀α[α0 ∈ T ∧ ∃t ⊑ s ∗ 〈m〉 ∗ α0[t ∈ B]], and: s ∗ 〈m〉 ∈ C.
We thus see: for all s, for all m, if s ∈ C, then s ∗ 〈m〉 ∈ C.

Using Theorem 19, we conclude: 〈 〉 ∈ C, that is: there exists a stump S such
that ∀α∃n[αn ∈ S ∧ αn ∈ B], that is: BarN (S ∩B). �

In the next Section, we show that Theorem 22 is a useful conclusion from The-
orem 19.

18. Ramseyan Theorems

18.1. Dickson’s Lemma.

Definition 20. For all α, β in N , α ◦ β is the element of N such that, for each n,
α ◦ β(n) = α

(

β(n)
)

.

[ω]ω := {ζ ∈ N | ∀i[ζ(i) < ζ(i + 1)]}.
The following Lemma, a humble member of a family of results called Ramseyan

Theorems, plays a rôle in Computer Algebra. The Lemma lies at the basis of
Buchberger’s algorithm.36

Theorem 23 (Dickson’s Lemma). For all p > 0, for all α0, α1, . . . αp−1 in N ,
there exist i, j such that i < j and ∀k < p[αk(i) ≤ αk(j)].

We first sketch a proof along traditional lines that fails to be constructive.

The proof is by induction to p.

First consider the case p = 1. Let α0 be given and consider α0(0). Note:
∃i ≤ α0(0)[α0(i) ≤ α0(i + 1)].

Now let p be given such that the case p of the Theorem has been established.
We want to prove the case p+ 1.

Let α0, α1, . . . , αp be given.
(♭) Find ζ in [ω]ω such that ∀i[αp ◦ ζ(i) ≤ αp ◦ ζ(i + 1)].
Applying the induction hypothesis, determine i, j such that, for all k < p,

α ◦ ζ(i) ≤ α ◦ ζ(j) and conclude: for all k ≤ p+ 1, α ◦ ζ(i) ≤ α ◦ ζ(j).
This completes the proof of the induction step.

Unfortunately, there are difficulties with (♭). It is, in general, not possible to
find ζ in [ω]ω such that ∀i[αp ◦ ζ(i) ≤ αp ◦ ζ(i + 1)]. The following example makes
this clear.

36See [22, Theorem 5].
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Define α such that, for all n, if n < k99, then α(n) = 1, and, if k99 ≤ n, then
α(n) = 0. Suppose we find ζ in [ω]ω such that ∀i[α ◦ ζ(i) ≤ α ◦ ζ(i + 1)].
If α ◦ ζ(0) = 0, then k99 ≤ ζ(0), and, if α ◦ ζ(0) = 1, then ∀n[n < k99].
The statement ‘∃ζ ∈ [ω]ω∀i[α ◦ ζ(i) ≤ α ◦ ζ(i + 1)]’ thus is reckless or hardy.

We now give a constructive proof of Dickson’s Lemma.

Proof. 37 The proof is by induction on p. The case p = 1 is easy and is done as
in the sketch preceding this proof. Now let p given such that the case p has been
established. We prove the case p+ 1.

Let α0, α1, . . . , αp be given.
Define38 QED := ∃i∃j[i < j ∧ ∀k ≤ p[αk(i) ≤ αk(j)].
We first prove:

(∗) for each m, ∀n∃j ≥ n[m ≤ αp(j) ∨ QED].

This again is done by induction. Note that the case m = 0 is trivial.
Now assume m is given and the case m has been established.
We prove the case m+ 1.
Let n be given.
Using the induction hypothesis, find ζ in [ω]ω such that ∀i[αp ◦ ζ(i) ≥ m ∨ QED].
Find i, j such that n < i < j and ∀k < p[αk ◦ ζ(i) ≤ αk ◦ ζ(j)].
Note: either m+ 1 ≤ αp ◦ ζ(i) or m+ 1 ≤ αp ◦ ζ(j) or QED.
We thus see: ∀n∃j ≥ n[m+ 1 ≤ αp(j) ∨ QED]. This completes the proof of (∗).

Using (∗) we find ζ in [ω]ω such that ∀n[αp ◦ ζ(n) ≤ αp ◦ ζ(n+ 1) ∨ QED].
Find i, j such that i < j and ∀k < p[αk ◦ ζ(i) ≤ αk ◦ ζ(j)].
Note: αp ◦ ζ(i) ≤ αp ◦ ζ(j) ∨ QED and conclude: QED.

This concludes the proof of the case p+ 1.
The theorem thus is proven by induction. �

18.2. How to formulate and extend Ramsey’s Theorem?
The following Definition extends Definition 10 in Subsection 12.1.

Definition 21. For all α, for all n, for all s in ωn, α ◦ s is the element of ωn such
that, for each i < n, α ◦ s(i) = α

(

s(i)
)

.

For all m, for all s in ωm, for all n, for all t in ωn such that ∀i < n[t(i) < m],
s ◦ t is the element of ωn such that for each i < n, s ◦ t(i) = s

(

t(i)
)

.

[ω]n := {s ∈ ωn | ∀i[i+ 1 < n→ s(i) < s(i+ 1)]}.
[ω]<ω :=

⋃

n[ω]
n.

Definition 22. 39

A ⊆ N is almost-full if and only if ∀ζ ∈ [ω]ω∃s ∈ [ω]<ω[ζ ◦ s ∈ A].

Let k > 0 be given. The k-dimensional case of Ramsey’s Theorem is the following
statement:

IRT(k): For all A,B ⊆ [ω]k,
if A,B are almost-full, then A ∩B is almost-full.

As, for all A ⊆ [ω]k, A ∩ ([ω]k \ A) = ∅ is not almost-full, the classical mathe-
matician draws the following conclusion from IRT(k):

IRT(k)class: For all A ⊆ [ω]k,
either A is not almost-full or [ω]k \A is not almost-full,

37See [54, Theorem 1.1].
38QED (again) stands for: quod est demonstrandum, ‘what we (still) have to prove’.
39This definition improves the definition as used in [54, Section 4.2]. The proof of [54, Theorem

4.4] is not correct as was pointed out to me by M. Bickford. The argument may be saved if one
restricts attention to strictly increasing sequences as we do here.
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i.e.

either ∃ζ ∈ [ω]ω∀s ∈ [ω]k[ζ ◦s ∈ A] or ∃ζ ∈ [ω]ω∀s ∈ [ω]k[ζ ◦s /∈ A].

This is the formulation of the theorem that will be familiar to the classical reader.
She also will be able to conclude (her reading of) IRT(k) from IRT(k)class.

40

F.P. Ramsey proved: ∀k > 0[IRT(k)class], see [46].

There is an extension of Ramsey’s result into the transfinite that is called the
Clopen Ramsey Theorem.

We need the following definition.

Definition 23. For every stump U , we define U := {s | s /∈ U ∧ ∀t ⊏ s[t ∈ U ]}.
The set U is called the border of the stump U .

Let a stump U be given. We introduce the following statement:

IRT(U): For all A,B ⊆ U ,
if A,B are almost-full, then A ∩B is almost-full.

The Clopen Ramsey Theorem41, CRT, is the statement:
for every stump U , IRT(U).

The Infinite Ramsey Theorem42, IRT, is the statement: for all k, IRT(k).

IRTclass is the (constructively wrong) statement: for all k, IRT(k)class.

18.3. The proof of the Clopen Ramsey Theorem. 43

The following Definition extends Definition 21 in Subsection 18.2.

Definition 24. For each n, for each k, [n]k := {s ∈ [ω]k | ∀i < k[s(i) < n]}.
For each n, for each k, [n]<k :=

⋃

i<k[n]
i.

Let a stump S be given. For every A ⊆ N, S secures A if and only if
∃m∀ζ ∈ [ω]ω[ζ(0) > m→ ∃n∃s ∈ [n]<n+1[ζn ∈ S ∧ ζn ◦ s ∈ A]].

Corollary 24. For each A ⊆ N, if A is almost-full, then there exists a stump S
securing A.

Proof. Let A ⊆ N be almost-full.
Define B :=

⋃

n{u ∈ ωn | u /∈ [ω]n ∨ ∃s ∈ [n]<n+1[u ◦ s ∈ A]}.
We prove that B is a bar in N .
Let α be given. Define ζ such that ζ(0) = α(0) and, for each n > 0,

if α(n+ 1) ∈ [ω]n+1, then ζ(n) = α(n), and, if not, then ζ(n) = ζ(n− 1) + 1.
Note: ζ ∈ [ω]ω.

Find n such that ∃s ∈ [n]<n+1[ζn ◦ s ∈ A], and, therefore, ζn ∈ B.

Note: if αn 6= ζn, then αn /∈ [ω]n, and also: αn ∈ B.
In any case, therefore, αn ∈ B.

We thus see: BarN (B).
Applying Theorem 22, find a stump S such that BarN (S ∩B).
Note: S secures A. �

Definition 25. Let a stump U be given and assume A ⊆ U and u ∈ U ∪ U .
u U -secures A if and only if either: u ∈ A or: u ∈ U and ∀t ∈ U [u ⊏ t→ t ∈ A].

Let also a stump S be given. S U -secures A if and only if
∃m∀ζ ∈ [ω]ω[ζ(0) > m→ ∃n[ζn ∈ S ∧ ∃s ∈ [n]<n+1[ζn ◦ s U -secures A]].

40Constructively, already IRT(1)class is a reckless or hardy statement:
consider A := {〈n〉 | n < k99}.

41See [21] and [26].
42See [66, Theorem 7.3]
43The Theorem has been announced in [66, §10.2] and [58, §6] but, until now, no proof appeared

in print.
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Corollary 25. For all stumps U , for each A ⊆ U , if A is almost-full, then there
exists a stump S U -securing A.

Proof. Note: if S secures A, then S U -secures A and use Corollary 24. �

Theorem 26 (Intuitionistic Ramsey Theorem).

(i) CRT : For all stumps U , for all A,B ⊆ U ,
if A,B are both almost-full, then A ∩B is almost-full.

(ii) IRT : For all k, for all A,B ⊆ [ω]k,
if A,B are both almost-full, then A ∩B is almost-full.

Proof. (i) According to Corollaries 24 and 25, it suffices to prove:
for all stumps U , P (U),
where P (U) is the statement: for all stumps S, Q(U, S),
where Q(U, S) is the statement: for all stumps T , R(U, S, T ),
where R(U, S, T ) is the statement:
for all A,B ⊆ U , if S U -secures A, and T U -secures B, then A ∩B is almost-full.

We use Axiom 2 from Subsection 17.1, the principle of induction on the set Stp
of stumps. Our proof is a proof by triple induction.

1. Note: ∅ = {〈 〉}.
For all A,B ⊆ {〈 〉}, if A,B are almost-full, then A = B = A ∩B = {〈 〉}.
We thus see that P (∅) is true.
2. Let a non-empty stump U be given such that, for all n, P (U ↾ 〈n〉).
We intend to prove P (U), that is: for all stumps S, Q(U, S).
We use again use Axiom 2.
2.1. Note that Q(U, ∅) holds a trivial reason: no subset of N is secured by ∅.
2.2. Let a non-empty stump S be given such that, for all n, Q(U, S ↾ 〈n〉).
We intend to prove: Q(U, S), that is, for all stumps T , R(U, S, T ).
Again, we use Axiom 2.

2.2.1. Note that R(U, S, ∅) holds for a trivial reason: no subset of N is secured
by ∅.

2.2.2. Let a non-empty stump T be given such that, for all n, R(U, S, T ↾ 〈n〉).
We intend to prove: R(U, S, T ).

Let A,B ⊆ U be given such that S U -secures A and T U -secures B.
We have to prove that A ∩B is almost-full, i.e.

(∗) ∀ζ ∈ [ω]ω∃s ∈ [ω]<ω[ζ ◦ s ∈ A ∩B].

It is useful, however, to first prove a slightly weaker statement:

(∗∗) ∀ζ ∈ [ω]ω∃s ∈ [ω]<ω[ζ ◦ s ∈ A ∩B ∨
(s 6= 0 ∧ s(0) = 0 ∧ ζ ◦ s ∈ A)].

Let ζ in [ω]ω be given.
We distinguish two cases.

Case (a). S ↾ 〈ζ(0)〉 = ∅. Note: {〈 〉} U -secures A, and A = U and A ∩ B = B
is almost-full. One may conclude: (∗), and, in particular, ∃s ∈ [ω]<ω[ζ ◦ s ∈ A∩B].

Case (b). S ↾ 〈ζ(0)〉 6= ∅. Then 〈 〉 ∈ S ↾ 〈ζ(0)〉.
Define a statement44

QED1 := ∃s ∈ [ω]<ω \ {0}[s(0) = 0 ∧ ζ ◦ s ∈ A].

Define Aζ := {u ∈ U | ¬∃t[u = ζ ◦ t] ∨ u ∈ A ∨ QED1}.
Note that, for all u in U ∪U , if ¬∃t[u = ζ ◦ t], then u U -secures A and also Aζ .

We now want to prove:

44QED (again) stands for: quod est demonstrandum, ‘what we (still) have to prove’.
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S ↾ 〈ζ(0)〉 U -secures Aζ .

First, using the fact that S U -secures A, find m such that
∀η ∈ [ω]ω[η(0) > m→ ∃n[ηn ∈ S ∧ ∃s ∈ [n]<n+1[ηn ◦ s U -secures A]]].
Define q := max

(

m, ζ(0)
)

.
Now let ρ in [ω]ω be given such that ρ(0) > q.
We want to prove: ∃n[ρn ∈ S ↾ 〈ζ(0)〉 ∧ ∃t ∈ [ω]<ω[ρn ◦ t U -secures Aζ ]].
Consider η := 〈ζ(0)〉 ∗ ρ.
Find n, s such that ηn ∈ S and s ∈ [n]<n+1 and ηn ◦ s U -secures A.
If s = 〈 〉, then 〈 〉 = ρ ◦ 〈 〉 U -secures A and also Aζ ,
We thus may assume s 6= 〈 〉. Note: ρ(n− 1) ∈ S ↾ 〈ζ(0)〉.
There are two cases.

Case (ba). s(0) > 0. Find u such that length(u) = length(s) and
∀i < length(u)[u(i) = s(i)− 1].
Note: ρ(n− 1) ◦ u = ηn ◦ s U -secures A and also Aζ .

Case (bb). s(0) = 0. Find u such that s = 〈0〉 ∗ u. Note: s(0) = η(0) = ζ(0).
If ¬∃t[ρn ◦ u = ζ ◦ t], then also ¬∃t[ρ(n− 1) ◦ u = ζ ◦ t] and ρ(n− 1) ◦ u U -secures
A and also Aζ .
If ∃t[ρ(n− 1) ◦ u = ζ ◦ t], find η in [ω]ω such that ζ ◦ s ⊏ η and ∀i∃j[η(i) = ζ(j)],
so η is a subsequence of ζ. Find n such that ηn ∈ U . As ζ ◦ s U -secures A, we may
conclude: ηn ∈ A. Taking t := ηn, we see: ∃t[t 6= 0 ∧ t(0) = 0 ∧ ζ ◦ t ∈ A], i.e.
QED1 and we may conclude: ρ(n− 1) ◦ 〈 〉 = 〈 〉 U -secures Aζ .

We thus see: for all ρ in [ω]ω, if ρ(0) > q, then
∃n[ρn ∈ S ↾ 〈ζ(0)〉 ∧ ∃t ∈ [ω]<ω[ρn ◦ t U -secures Aζ ]], that is:

S ↾ 〈ζ(0)〉 U -secures Aζ .

Also:

T U -secures B.

Using the assumption R(U, S ↾ 〈ζ(0)〉, T ), we conclude: Aζ ∩B is almost-full.
In particular, we may find s in [ω]<ω such that ζ ◦ s ∈ Aζ ∩ B, and therefore,

either ζ ◦ s ∈ A ∩B or QED1.
We thus see: ∀ζ ∈ [ω]ω∃s ∈ [ω]<ω[ζ◦s ∈ A∩B ∨ (s 6= 0 ∧ s(0) = 0 ∧ ζ◦s ∈ A)].

Now let ζ in [ω]ω be given.
Define a statement

QED2 := ∃s ∈ [ω]<ω[ζ ◦ s ∈ A ∩B].

Also define

C := {u ∈ U ↾ 〈ζ(0)〉 | ¬∃t ∈ [ω]<ω][u = ζ ◦ t] ∨ 〈ζ(0)〉 ∗ u ∈ A ∨ QED2}.
We want to prove that C is almost-full.
First, note that, for each η in [ω]ω, if η(0) = ζ(0) and η is a subsequence of ζ, i.e.:

∀i∃j[η(i) = ζ(j)], then either ∃s ∈ [ω]<ω[η ◦ s ∈ A ∩ B], and, therefore, QED2, or
∃s ∈ [ω]<ω\{0}[s(0) = 0 ∧ η◦s ∈ A], and, therefore, ∃s ∈ [ω]<ω[〈ζ(0)〉∗(η◦s) ∈ A].

We may even conclude: for every η in [ω]ω that is a subsequence of ζ, either
QED2, or ∃s ∈ [ω]<ω[〈ζ(0)〉 ∗ (η ◦ s) ∈ A], for, given η such that η(0) 6= ζ(0) we
may apply the previous result to the sequence η+ := 〈ζ(0)〉 ∗ η.

We thus see that, for every η in [ω]ω that is a subsequence of ζ, there exists s in
[ω]<ω such that η ◦ s ∈ C.

Now let η in [ω]ω be given. Define ηζ in [ω]ω as follows.
If ∃i[η(0) = ζ(i)], define ηζ(0) = η(0), and, if not, define ηζ(0) = ζ(0).
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For each n, if ∃t ∈ [ω]n+2[η(n+ 2) = ζ ◦ t], then ηζ(n+ 1) = η(n+ 1), and, if not,
then ηζ(n+ 1) = ζ(i + 1), where i satisfies ηζ(n) = ζ(i).
As ηζ is a subsequence of ζ, find s in [ω]<ω such that ηζ ◦ s ∈ C.
Either η ◦ s = ηζ ◦ s ∈ C or η ◦ s 6= ηζ ◦ s. In the latter case, let n0 be the least n
such that ¬∃i[η(n) = ζ(i)]. Define ρ in [ω]ω such that ∀n[ρ(n) = n0 + n] and find

m such that η ◦ ρ(m) ∈ U ↾ 〈ζ(0)〉. Define s := ρm and note: η ◦ ρ(m) = η ◦ s and
¬∃u ∈ [ω]<ω[η ◦ s = ζ ◦ u] and η ◦ s ∈ C.

We thus see that C is almost-full.
We obtained this result using the assumption: Q(U, S ↾ 〈ζ(0)〉).
Now define

D := {u ∈ U ↾ 〈ζ(0)〉 | ¬∃t ∈ [ω]<ω][u = ζ ◦ t] ∨ 〈ζ(0)〉 ∗ u ∈ B ∨ QED2}.

Using the assumption: R(U, S, T ↾ 〈ζ(0)〉), one may prove: D is almost-full, by
an argument similar to the one that established that C is almost-full.

Using the assumption P (U ↾ 〈ζ(0)〉), one then concludes: C ∩D is almost-full.
Find s in [ω]<ω such that ζ ◦ s ∈ C ∩D or 〈ζ(0)〉 ∗ ζ ◦ s ∈ A∩B, so, in any case,

QED2.

Using the assumptions: for all n, P (U ↾ 〈n〉) (2), and: for all n, Q(U, S ↾ 〈n〉)
(2.2) and: for all n, R(U, S, T ↾ 〈n〉) (2.2.2), one thus proves: R(U, S, T ) , i.e.: for
all A,B ⊆ U , if S, T U -secure A,B, respectively, then A ∩ B is almost-full, i.e.:
∀ζ ∈ ωω∃s ∈ [ω]<ω[ζ ◦ s ∈ A ∩B].

Axiom 2 and Corollary 25 then guarantee the conclusion: CRT.

(ii) This immediately follows from (i), as, for all k, ω<k is a stump and

ω<k = ωk.45 �

Corollary 27. For all k > 0, for all r > 0, for all subsets A0, A1, . . . , Ar−1 of [ω]k,
if, for each j < r, Aj is almost-full, then

⋂

j<r Aj is almost-full.

Proof. Straightforward, by induction. �

18.4. The (extended) Finite Ramsey Theorem and
the ‘compactness argument’.

The following Definition extends Definition 24 in Subsection 18.3. Note that, de-
viating from the usual treatment of Ramsey theorems, we consider finite increasing
sequences of nonnegative integers rather than finite sets of nonnegative integers.

Definition 26. For all r > 0, r<ω := {s | ∀i < length(s)[s(i) < r]}.
For all positive integers c,m, k, r,

c : [m]k → r, (c is an r-colouring of [m]k), if and only if
c ∈ r<ω and ∀s ∈ [m]k[s < length(c)].

If c : [m]k → r, one may consider c as an r-colouring of the k-element subsets
of m = {0, 1, . . . ,m− 1}.

For all positive integers k, r, n,M , M → (n)kr if and only if,
for every c : [M ]k → r, there exists t in [M ]n such that
∃j < r∀u ∈ [n]k[c(t ◦ u) = j], i.e. t is c-monochromatic.

If M → (n)kr , then, for every r-colouring c of the k-element subsets of M =
{0, 1, . . . ,M − 1} there exists an n-element subset A = {t(0), t(1), . . . , t(n− 1)} of
M such that all k-element subsets of A obtain, from c, one and the same colour.

For all positive integers k, r, n,M , M →∗ (n)kr if and only if,
for every c : [M ]k → r, there exist t, p such that p ≥ n and
t ∈ [M ]p and p = t(0) and ∃j < r∀u ∈ [p]k[c(t ◦ u) = j].

45
IRT is proven in [66, Theorem 7.3] from what is, in this paper, Theorem 19, see also [65,

§12]. IRT(2) is obtained in [54, §4] and [59, Theorem 9] from what is, in this paper Theorem 22.
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The meaning of this statement is similar to that of the previous one but now the p-
element subset A = {t(0), t(1), . . . t(p−1)} of M is required to satisfy the conditions
n ≤ p and p = min(A) = t(0). A finite set A with the property #(A) ≥ min(A) is
sometimes called relatively large, see [44].

FRT, the Finite Ramsey Theorem, is the statement:

∀k∀r∀n∃M [M → (n)kr ].

FRTPH , the Extended Finite Ramsey Theorem, is the statement:

∀k∀r∀n∃M [M →∗ (n)kr ].

Like IRTclass, FRT was proven in 1928 by F.P. Ramsey, see [46].
Ramsey thought proving IRTclass was a useful training for someone who wanted

to prove FRT. FRT was given an independent proof.
Around 1950, it was seen that a so-called compactness argument proves FRT

from IRTclass, see [18] and [32, §1.7 and §6.3].

In 1976, the stronger statement FRTPH was formulated by J. Paris and L. Har-
rington. Also FRTPH may be proven (classically) from IRTclass by a compactness
argument, see [44] but FRTPH , although it may be formulated in the language of
Peano Arithmetic, can not be proven from the axioms of PA.46 Paris and Harring-
ton thus found a mathematical Incompleteness Theorem, thereby creating a stir in
the logic community.

The proof of the next Theorem is an intuitionistic version of the compactness
argument deriving FRTPH from IRTclass.

Definition 27. For each r > 0, rω := {χ | ∀i[χ(i) < r]}.

Theorem 28. IRT → FRTPH .

Proof. 47 Let n, k, r be given positive integers. Let χ be an element of rω . We want
to prove:

QED3 := ∃p ≥ n∃t ∈ [ω]p[t(0) = p ∧ ∃j < r∀u ∈ [p]k[χ(t ◦ u) = j]].

For each j < r, define: Aj := {t ∈ [ω]k | χ(t) 6= j ∨ QED3}.
Let j < r and ζ in [ω]ω be given. Find p := max

(

n, ζ(0)
)

and define t := ζp.

Either: ∀u ∈ [p]k[χ(t ◦ u) = j] and QED3, or: ∃u ∈ [p]k[χ(t ◦ u) 6= j].
We thus see: for each j < r, Aj is almost-full.
Using Corollary 27, conclude:

⋂

j<r Aj is k-almost-full.

In particular,
⋂

j<r Aj is inhabited and, therefore, QED3.

We thus see: ∀χ ∈ rω∃p ≥ n∃t ∈ [ω]p[(t(0) = p ∧ ∃j < r∀u ∈ [p]k[χ(t ◦ u) = j]].

Now let B be the set of all c in r<ω such that

∃p ≥ n∃t ∈ [ω]p[t(0) = p ∧ ∃j < r∀u ∈ [p]k[t ◦ u < length(c) ∧ c(t ◦ u) = j]].

Note: Barrω(B) and: rω is a fan. Using the Fan Theorem, Theorem 14, find
z,m such that length(z) = m and ∀i < m[z(i) ∈ B] and ∀χ ∈ rω∃i < m[z(i) ⊏ χ].

Define N := maxi<m length
(

z(i)
)

.
Find M such that ∀u < N∀j < length(u)[u(j) < M ].
Then: M →∗ (n)kr . �

46There is also no such argument in Heyting Arithmetic HA, the intuitionistic analog of PA.
Every theorem of HA is also a theorem of PA.

47See [66, Corollary 9.5.2].
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19. Borel sets

19.1. Some preparations. We introduce the important notion of a spread.

Definition 28. Let β be given. β is a spread-law if and only if
∀s[β(s) = 0 ↔ ∃n[β(s ∗ 〈n〉) = 0]].

X ⊆ N is a spread if and only if there exists a spread-law β such that
X = Fβ := {α | ∀n[β(αn) = 0]}.

Note that the spread-law β in a sense governs the set Fβ. The law makes
clear which steps are allowed during the step-by-step construction of an element
α = α(0), α(1), . . . of Fβ . In his early publications, Brouwer used the term ‘set,
Menge’ for what he later called spreads. This is because the notion expresses his
view in what sense a totality like for instance R might be called a set.

Brouwer’s Continuity Principle, Axiom 1, extends to spreads:

Theorem 29 (The extended Continuity Principle).
Let β be a spread-law and let R be a subset of Fβ × N.
If ∀α ∈ Fβ∃n[αRn], then ∀α ∈ Fβ∃m∃n∀β ∈ Fβ [αm ⊏ β → βRn].

Proof. Let β be a spread-law such that β(〈 〉) = 0.
Define ϕ : N → N such that, for each α, for each n,
if β(α

(

n+ 1)
)

= 0, then (ϕ|α)(n) = α(n), and,

if not, then (ϕ|α)(n) = the least p such that β
(

(ϕ|α)n ∗ 〈p〉
)

= 0].
Note: ∀α[ϕ|α ∈ Fβ] and ∀α ∈ Fβ [ϕ|α = α].
The function ϕ is called a retraction of N onto Fβ .

Now assume: ∀α ∈ Fβ∃n[αRn]. Then ∀α∃n[(ϕ|α)Rn]. Using Axiom 1 conclude:
∀α∃m∀β[αm ⊏ β → (ϕ|β)Rn] and: ∀α ∈ Fβ∃m∃n∀β ∈ Fβ [αm ⊏ β → βRn]. �

Definition 29. For each α in N , for each n, we define αn in N by:
∀m[αn(m) = α

(

2m(2n+ 1)− 1
)

].
αn is called the n-th subsequence of α.

For all α, for all n, j, we define: αn,j := (αn)j.

The next definition explains how continuous functions fom N to N and contin-
uous functions from N to N are coded by elements of N .

Definition 30. For each ϕ, we define: ϕ : N → N if and only if ∀α∃n[ϕ(αn) 6= 0].
For each ϕ such that ϕ : N → N, for each α, we let ϕ(α) be the number p such

that ∃n[ϕ(αn) = p+ 1] ∧ ∀i < n[ϕ(αi) = 0]].
For each ϕ, we define: ϕ : N → N if and only if ∀n[ϕn : N → N].
For each ϕ such that ϕ : N → N , for each α, we let ϕ|α be the element β of N

such that ∀n[β(n) = ϕn(α)].

The following notion plays a key rôle in intuitionistic descriptive set theory, the
theory of Borel and projective sets.

Definition 31 (Reducibility). 48

For all X ,Y ⊆ N , for all ϕ : N → N , we define: ϕ reduces X to Y, if and only
if ∀α[α ∈ X ↔ ϕ|α ∈ Y].

For all X ,Y ⊆ N , we define: X � Y, X reduces to Y, if and only if there exists
ϕ : N → N reducing X to Y.

If ϕ reduces X to Y, then, for each α, the question

48In classical descriptive set theory, the reducibility notion introduced here is known as Wadge-
reducibility, see [38, Section 21.E]. One may compare this notion to the notion of many-one
reducibility from recursion theory.
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Does α belong to X ?

is reduced to the question:

Does ϕ|α belong tot Y?

19.2. Borel sets of finite rank. We first introduce open subsets and closed sub-
sets of N = ωω.

Definition 32. For each β, we define G1
β := {α | ∃n[β(αn) 6= 0]} and

F1
β := N \ G1

β = {α | ∀n[β(αn) = 0]}.
We define E1 := {α | ∃n[α(n) 6= 0]} and

A1 := N \ E1 = {α | ∀n[α(n) = 0]} = {0}.
X ⊆ N is open, or: Σ0

1, if and only if ∃β[X = G1
β ],

and closed, or: Π0
1, if and only if ∃β[X = F1

β ].

Note that spreads, as introduced in Definition 28, are closed subsets of N . It is
not true that every closed subset of N is a spread. A closed subset F of N is a
spread if and only if it is located, i.e. ∃β∀s[∃α ∈ F [s ⊏ α] ↔ β(s) = 0].

Note that, if G ⊆ N is open, then its complement N \G is a closed subset of N .
It is not true that the complement of a closed subset of N always is an open subset
of N .

We now introduce Borel sets of finite rank. Note that we avoid the operation of
taking the complement of a given Borel set.

Definition 33. For each n > 0, for each β, we define, inductively,
Gn+1
β =

⋃

m Fn
βm , and Fn+1

β =
⋂

m Fn
βm .

For each n > 0, we define, inductively,
En+1 := {α | ∃m[αm ∈ An]} and An+1 := {α | ∀m[αm ∈ En]}.

For each n > 0, X ⊆ N is Σ0
n if and only if ∃β[X = Gn

β ] and

X is Π0
n if and only if ∃β[X = Fn

β ].

X ⊆ N belongs to Σ0
n+1 if and only if there exists an infinite sequence Y0,Y1, . . .

of elements of Π0
n such that X =

⋃

m Ym.
X ⊆ N belongs to Π0

n+1 if and only if there exists an infinite sequence Y0,Y1, . . .

of elements of Σ0
n such that X =

⋂

m Ym.

19.3. The fine structure of the Borel hierarchy. One may prove that the
union of two opens sets is open again but it is not true that the union of two closed
sets is a closed sets itself. It is useful to introduce the following operation.

Definition 34. For each n > 0, for each X ⊆ N , we define
Dn(X ) = {α | ∃i < n[αi ∈ X ]}.

The next Theorem, Theorem 30, offers an example of a union of two closed
subsets of N that is not an intersection of countably many open subsets of N and,
therefore, certainly not a closed subset of N , see item (iii). Theorem 30(iv) makes
it clear that there are unions of three closed sets not coinciding with any union
of two closed sets, and unions of four closed sets not coinciding with any union of
three closed sets, and so on.

Theorem 30. (i) For all X ⊆ N , X is Π0
1 if and only if X � A1.

(ii) For all X ⊆ N , for all n > 0, X � Dn(A1) if and only if there exists Π0
1 sets

F0,F1, . . . ,Fn−1 such that X =
⋃

i<n Fi.

(iii) D2(A1) is not Π0
2.

(iv) For all n > 0, Dn+1(A1) � Dn(A1).
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Proof. The proofs of (i) and (ii) are left to the reader.

(iii) Define T := {α | ∀m∀n[
(

α(m) 6= 0 ∧ α(n) 6= 0
)

→ m = n]}.
T is the set of all α that assume at most one time a value different from 0.
Note that T is a spread.

Assume D2(A1) is Π
0
2. Find β such that D2(A1) = {α | ∀m∃n[βm(αn) 6= 0]}.

Let α in T be given. Let m be given. Define α0, α1 such that, for all n, for both
i < 2, (αi)

i = 0 and, for all s, if ¬∃p[s = 〈i, p〉], then αi(n) = α(n).
Note: for both i < 2, αi ∈ D2(A1). Also note: ∀n[αn = α0n ∨ αn = α1n].
Find n0, n1 such that, for both i < 2, βm(αini) 6= 0. Note: either α0n0 ⊏ α or
α1n1 ⊏ α, and, in both cases, ∃n[βm(αn) 6= 0].

We thus see: ∀α ∈ T [α ∈ D2(A1)]. Using Theorem 29, find m, i such that i < 2
and ∀α[0m ⊏ α→ αi = 0]. This gives a contradiction as one may find α in T such
that 0m ⊏ α and αi 6= 0.

We may conclude: D2(A1) is not Π
0
2.

(iv) Again, consider T := {α | ∀m∀n[
(

α(m) 6= 0 ∧ α(n) 6= 0
)

→ m = n]}.
Let n > 0 be given such that Dn+1(A1) � Dn(A1).
Find β such that Dn+1(A1) = {α | ∃i < n∀j[βi(αj) = 0]}.
For each i, define Bi := {α | αi = 0}. Note that each Bi is a spread.
Also note: Dn+1(A1) =

⋃

i<n+1 Bi.
Using Theorem 29, find, for each i < n+ 1, mi and ki < n such that
∀α ∈ Bi[0mi ⊏ α→ ∀n[βki (αn) = 0]].

Find i, j < n + 1 such that i < j and ki = kj . Note: for all α in T , either
0mi ⊏ α or 0mi ⊏ α, so, in any case: ∀n[βki(αn = 0] and α ∈ Dn+1(A1).

We thus see: ∀α ∈ T [α ∈ Dn+1(A1)]. Using Theorem 29, find m, i such that
i < n+ 1 and ∀α[0m ⊏ α→ αi = 0]. This gives a contradiction as one may find α
in T such that 0m ⊏ α and αi 6= 0. �

Theorem 30 gives an inkling of the fine structure of the intuitionistic Borel hi-
erarchy. In fact, even within the class Σ0

2, there are uncountably many degrees of
reducibility, see [59, Theorems 3.5 and 3.9].

19.4. The Borel hierarchy theorem. The next Theorem, Theorem 31, makes a
start with establishing the Borel hierarchy itself.

Theorem 31. (i) For all n > 0, for all X ⊆ N , X is Σ0
n if and only if X � En,

and X is Π0
n if and only if X � An.

(ii) For every ϕ : N → N , there exists α such that,
for all m, αm ∈ E1 ↔ (ϕ|α)m ∈ E1, and, therefore,
α ∈ A2 ↔ ϕ|α ∈ A2 and α ∈ E2 ↔ ϕ|α ∈ E2.

(iii) For every ϕ : N → N ,
if ∀α[α ∈ E2 → ϕ|α ∈ A2], then ∃α[α ∈ A2 ∧ ϕ|α ∈ A2].

(iv) For every ϕ : N → N , if ∀α[α ∈ A2 → ϕ|α ∈ E2], then ∃α[α ∈ E2 ∧ ϕ|α ∈ E2].
Proof. (i) The proof is left to the reader.

(ii) Let ϕ : N → N be given. Define α, inductively, as follows.
Let p be given such that α(0), α(1), . . . , α(p− 1) have been defined already.
Find m,n such that such that p = 2n(2m+ 1)− 1.
Define α(p) = αm(n) := 1 if ∃q < p[ϕm(αq) > 1 ∧ ∀i < q[ϕm(αi) = 0]],
and α(p) := 0 if not.

Note that, for all m, ∃n[αm(n) 6= 0] ↔ ∃n[(ϕ|α)m(n) 6= 0], and, therefore,
αm ∈ E1 ↔ (ϕ|α)m ∈ E1 and αm ∈ A1 ↔ (ϕ|α)m ∈ A1.

(iii) Let ϕ : N → N be given such that ∀α[α ∈ E2 → ϕ|α ∈ A2].
Using (i), find α such that ∀m[αm ∈ E1 ↔ (ϕ|α)m ∈ E1].
Let m be given.
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Define α0 such that (α0)
m = 0 and, for all n 6= m, (α0)

n = αn.
Note: α0 ∈ E2, and, therefore, ϕ|α0 ∈ A2 and (ϕ|α0)

m ∈ E1.
Find n such that (ϕ|α0)

m(n) 6= 0.
Either (ϕ|α)m(n) 6= 0 and (ϕ|α)m ∈ E1 and also αm ∈ E1,
or (ϕ|α0)

m(n) = 0 and ϕ|α ⊥ ϕ|α0 and α ⊥ α0 and αm ⊥ 0 and αm ∈ E1.
We thus see: ∀m[αm ∈ E1]. Therefore, both α and ϕ|α are in A2.

(iv) The following observation is easy but crucial:

∀α[∃σ∀m[αm
(

σ(m)
)

6= 0] → α ∈ A2].

For each α, for each σ, we let σ ⋊⋉ α be the element of N such that, for each m,
(σ ⋊⋉ α)m

(

σ(m)
)

= max
(

1, αm
(

σ(m))
)

and, for all n 6= σ(m),
(σ ⋊⋉ α)m(n) = αm(n)]. σ ⋊⋉ α may be thought of as ‘α-corrected-by-σ’.
Note: ∀α[∃σ[α = σ ⋊⋉ α] → α ∈ A2].

Now let ϕ : N → N be given such that ∀α[α ∈ A2 → ϕ|α ∈ E2].
Conclude: ∀α∃n[

(

(ϕ|(α0 ⋊⋉ α1)
)n

= 0].

Using Axiom 1, find m,n such that ∀α[0m ⊏ α →
(

(ϕ|(α0 ⋊⋉ α1)
)n

= 0].

Define β in C such that ∀i∀j[βi(j) = 1 ↔ (i < m ∧ j = 0)].
Let j be given. Find p such that ϕn,j(βp) 6= 0 and ∀i < p[ϕn,j(βi) = 0].
Find α such that 0m ⊏ α and βp ⊏ α0 ⋊⋉ α1.
Conclude: (ϕ|β)n(j) =

(

ϕ|(α0 ⋊⋉ α1)
)n
(j) = 0 and ϕn,j(βp) = 1.

We thus see: ∀j[(ϕ|β)n(j) = 0] and (ϕ|β)n = 0 and ϕ|β ∈ E2.
We thus found β such that both β and ϕ|β are in E2. �

Note that the proofs of Theorem 31(ii) and (iii) are elementary in the sense
that they do not use intuitionistic axioms like the Continuity Principle or the Fan
Theorem. The constructive argument for Theorem 31(ii) extends to a constructive
argument establishing

For each n > 0, for each ϕ : N → N , there exists α such that
α ∈ En ↔ ϕ|α ∈ En and α ∈ An ↔ ϕ|α ∈ An.

Unfortunately, one can’t conclude from this, constructively, thatAn does not reduce
to En. Assuming that ϕ : N → N reduces An to En, one finds, using Theorem
31(ii), α such that α ∈ An ↔ α ∈ En. If n > 1, one can’t derive a contradiction
from this statement.

The intervention of the Continuity Principle in the proof of Theorem 31(iv) is
crucial. One may extend this argument to a proof of:

For each n > 0, for each ϕ : N → N ,
if ∀α[α ∈ En → ϕ|α ∈ An], then ∃α[α ∈ An ∧ ϕ|α ∈ An], and,
if ∀α[α ∈ An → ϕ|α ∈ En], then ∃α[α ∈ En ∧ ϕ|α ∈ En].

This shows that En positively refuses to reduce to An, and An positively refuses
to reduce to En.

The theorem extends into the transfinite and then may be called the Intuitionistic
Borel Hierarchy Theorem, see [58, Theorems 7.9 and 7.10].

20. Notions of finiteness

20.1. Some examples. We study decidable subsets of the set N.
Such sets may be called ‘finite’ in various constructively different ways.

Definition 35. For every α, we define Dα := {n | α(n) 6= 0}.
Dα is called the subset of N decided by α.

Fin := {α | ∃n∀m > n[α(m) = 0]}.
Dα is finite if and only if α ∈ Fin.
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Note: α ∈ Fin if and only if we can calculate the number of elements of Dα.

Definition 36. For every X ⊆ N , we define:
X+ := {α | ∃n∀m > n∀n[α(m) 6= 0 → α ∈ X ]}.
Dα is perhaps-finite49 if and only if α ∈ Fin+,
Dα is perhaps-perhaps-finite if and only if α ∈ Fin++ = (Fin+)+,

Some examples are useful.

1. Define α such that ∀n[α(n) 6= 0 ↔ n = k99]. Then {k99} = {n | n = k99}
is a decidable subset of N. The statement ‘α ∈ Fin’ is equivalent to ‘∃n[n = k99]
or ∀n[n < k99]’ and thus is reckless or hardy. We do know Dα has at most one
element, but we do not know if the number of elements of Dα is 0 or 1.

On the other hand, α ∈ Fin+. For assume we find m such that α(m) 6= 0, Then
m = k99 and Dα = {m} is finite. Therefore: ∀m[α(m) 6= 0 → α ∈ Fin] and:
α ∈ Fin+.

2. Define α such that ∀n[α(n) 6= 0 ↔ k99 ≤ n < 2 · k99]. Again, the statement
‘α ∈ Fin’ is reckless, and again, Dα is perhaps-finite, although, unlike in the case
of example 1, we are unable to give an upper bound for the number of elements of
Dα.

3. Let γ, δ be given and define α such that ∀n[α(n) 6= 0 ↔ (n = kγ ∨ n = kδ)], so
Dα = {kγ , kδ}. The reader may find out herself that Dα is perhaps-perhaps-finite
and that the statement: ‘Dα is perhaps-finite’ may be reckless.

20.2. Extension into the transfinite. The process of taking so-called ‘perhapsive
extensions ’ of the set Fin may be continued into the transfinite.

Definition 37. We define a collection E of subsets of N by means of the following
inductive definition.

(i) Fin ∈ E.
(ii) For every X in E, also X+ ∈ E.
(iii) For every infinite sequence X0,X1, . . . of elements of E, such that, for each n,

(Xn)
+ ⊆ Xn+1, also

⋃

n Xn ∈ E.
(iv) Clauses (i), (ii), (iii) produce all elements of E.

Definition 38. For every X ⊆ N , X¬ := N \ X := {α | ¬(α ∈ X )} and
X¬¬ = (X¬)¬.

Theorem 32. (i) For all X in E, Fin ⊆ X ⊆ Fin¬¬.
(ii) For all X in E, for all α, ∀s[α ∈ X ↔ s ∗ α ∈ X ].
(iii) For all X in E, X ( X+.

Proof. 50 (i) The proof is by induction, following the definition of the class E .
1. Obviously, Fin ⊆ Fin¬¬, see Subsection 11.2.

2. Assume Fin ⊆ X ⊆ Fin¬¬. Assume α ∈ X+.
Find m such that ∀n > m[α(n) 6= 0 → α ∈ X and distinguish two cases:

Case (a). ∃n > m[α(n) 6= 0]. Then α ∈ X and, therefore: α ∈ Fin¬¬.
Case (b). ¬∃n > m[α(n) 6= 0]. Then ∀n > m[α(n) = 0], so α ∈ Fin ⊆ Fin¬¬.
We thus see: if ∃n > m[α(n) 6= 0] ∨ ¬∃n > m[α(n) 6= 0], then α ∈ Fin¬¬.
We may conclude: α ∈ Fin¬¬, see Subsection 11.2.
We thus see: ∀α ∈ X+[α ∈ Fin¬¬], and conclude: Fin ⊆ X ⊆ X+ ⊆ Fin¬¬.

3. Assume: for all n, Fin ⊆ Xn ⊆ Fin¬¬. Clearly, then Fin ⊆ ⋃

n Xn ⊆ Fin¬¬.

(ii) We again use induction on the definition of the class E .
49Cf. Subsection 9.8.
50See [50], [51] and [55].
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1. Note: ∀α∀s[α ∈ Fin ↔ s ∗ α ∈ Fin].

2. Let X in E be given such that ∀α∀s[α ∈ X ↔ s ∗ α ∈ X ]. Let s, α be given.
If s ∗ α ∈ X+, find m such that ∀n > m[s ∗ α(n) 6= 0 → s ∗ α ∈ X ] and conclude:
for all n > m, if α(n) 6= 0 then length(s) + n > m and s ∗ α ∈ X and α ∈ X , i.e.
α ∈ X+. Conversely, if α ∈ X+, find m such that ∀n > m[α(n) 6= 0 → α ∈ X ] and
conclude: for all n > m+ length(s), if s ∗α(n) 6= 0, then α

(

n− length(s)
)

6= 0 and

n− length(s) > m and α ∈ X and s ∗ α ∈ X , i.e. s ∗ α ∈ X+.

3. Assume: for all n, ∀α∀s[α ∈ Xn ↔ s ∗ α ∈ Xn].
Clearly, then ∀α∀s[α ∈ ⋃

n Xn ↔ s ∗ α ∈ ⋃

n Xn.

(iii) We shall prove: for all X in E there exists a spread F such that F ⊆ X+

and not F ⊆ X . The proof is by induction, following the definition of the class E .
1. Consider T = {α | ∀m∀n[

(

α(m) 6= 0 ∧ α(n) 6= 0
)

→ m = n]}.
Note that T is a spread. Note that, for every α in T , for every n, if α(n) 6= 0, then
∀m > n[α(m) = 0] and α ∈ Fin. We thus see: T ⊆ Fin+

Now assume T ⊆ Fin. Then ∀α ∈ T ∃n∀m > n[α(m) = 0]].
Using Theorem 29, find p, n such that ∀α ∈ T [0p ⊏ α→ ∀m > n[α(m) = 0]].
Conclude: n+ 1 ≥ p and consider α := 0(n+ 1) ∗ 〈1〉 ∗ 0.
Note: α ∈ T , 0p ⊏ α and α(n+ 1) 6= 0.
Clearly, we reached a contradiction.

2. Let X in E be given and let F be a spread such that F ⊆ X+ and not F ⊆ X .
Define F∗ := {α | ∀n∀p∀β[α = 0n ∗ 〈p+ 1〉 ∗ β → β ∈ F ]}.
Note: F∗ is a spread and 0 ∈ F∗.
Note that, for every α in F∗, for every n, if 0n ⊏ α and α(n) 6= 0, then there exists
β in F such that α = α(n+ 1) ∗ β, and by (ii), also α ∈ F and α ∈ X+.
We thus see: F∗ ⊆ X++.

Now assume F∗ ⊆ X+.
Then ∀α ∈ F∗∃n∀m > n[α(m) 6= 0 → α ∈ X ]. Using Theorem 29,
find p, n such that ∀α ∈ F∗[0p ⊏ α → ∀m > n[α(m) 6= 0 → α ∈ X ]].
We may assume n + 1 > p. Note that, for each β in F , 0n ∗ 〈1〉 ∗ β ∈ F∗ and:
0n ∗ 〈1〉 ∗ β ∈ X , and by (ii), β ∈ X .
We thus see: F ⊆ X and we know that this leads to a contradiction.
Conclude: not: F ⊆ X+.

3. Let X0,X1, . . . be an infinite sequence of elements of E such that, for each n,
(Xn)

+ ⊆ Xn+1, and let F0,F1, . . . be an infinite sequence of spreads such that, for
each n, Fn ⊆ (Xn)

+ ⊆ Xn+1 and not Fn ⊆ Xn.
Define F∗ := {α | ∀n∀p∀β[α = 0n ∗ 〈p+ 1〉 ∗ β → β ∈ Fn}.
Note: F∗ is a spread and 0 ∈ F∗.
Note that, for every α in F∗, for every n, if 0n ⊏ α en α(n) 6= 0, then there exists
β in Fn ⊆ Xn+1 such that α = α(n+ 1) ∗ β, and by (ii), also α ∈ Xn+1 ⊆ ⋃

iXi.
We thus see: F∗ ⊆ (

⋃

i Xi)
+.

Now assume: F∗ ⊆ ⋃

iXi. Using Theorem 29, find p, i such that
∀α ∈ F∗[0p ⊏ α → α ∈ Xi]. Define n := max(p, i) and note: for all β in Fn,
0n ∗ 〈1〉 ∗ β ∈ F∗, so 0n ∗ 〈1〉 ∗ β ∈ Xi, and, by (ii), also β ∈ Xi.
We thus see: Fn ⊆ Xi ⊆ Xn. Contradiction. �

Theorem 32 shows the expressive power of the language of intuitionistic mathe-
matics. In Theorem 32(i) the set Fin¬¬ might be replaced by the set

AlmostFin := {α | ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]},
as one may prove:

⋃ E ⊆ AlmostFin.
Using Theorem 22, one may prove: AlmostFin ⊆ ⋃ E ⊆ Fin¬¬.
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The set AlmostFin is an example of a ‘simple’ Π1
1 or co-analytic set that fails

to be positively Borel, see [55, §3].

21. Avoiding Brouwer’s ‘axioms’.

21.1. Bishop-style constructivism. E. Bishop (1928-1983) started his own school
of constructive mathematics in the 1960s, see [3] and [4]. Although Bishop admired
Brouwer for his criticism of the non-constructive nature of much of mathematics,
and for his heroic attempt to do something about it, he also had strong hesitations
about Brouwer’s work. He did not accept Brouwer’s adoption of the Continuity
Principle and the Fan Theorem. He thought the arguments in favour of these prin-
ciples bizarre, metaphysical and mystical and judged that Brouwer, by bringing
them in, had spoiled his own good cause. He declared Brouwer’s intuitionism to be
dead and wanted a new beginning.

Nevertheless, developing his constructive mathematics, he felt the need for some
of the consequences of Brouwer’s principles.

Bishop’s course was the following. He declared the notion of ‘pointwise continu-
ity’ of real functions to be ‘irrelevant’. There is no need then for arguments as given
in Section 12. He defined a function from R to R to be continuous if and only if
it is uniformly continuous on every closed and bounded subinterval of R. He thus
buys for nothing what was for Brouwer the main consequence of the Fan Theorem,
Theorem 16. There is no need then for arguments ‘proving’ the Fan Theorem as
given in Section 13.51

Bishop’s attitude might perhaps be called ‘pragmatic’ in view of Brouwer’s
more deeply going analysis of mathematical thinking. The principles proposed
by Brouwer, even if one does not want to subscribe to the way he defends them,
deserve to be discussed as possible starting points for our common mathematical
discourse. Not doing so, Bishop denied himself the possibility of a further going
perspective.

Bishop calls his own attitude realistic, contrasting it with the attitude of the
‘classical’ mathematician that uses non-constructive arguments. Unlike Brouwer,
he does not fiercely attack the classical mathematician but calls him ‘idealistic’. In
view of Subsection 3.2, where the platonists were dubbed ‘realists’, this terminology
is funny.

21.2. Martin-Löf ’s ‘constructive mathematics’. P. Martin-Löf (1942- ) made
a serious study of Brouwer’s work and came to the following view in [42]. Every
object in constructive mathematics should be given by a ‘a finite configuration of
signs ’. Therefore, an infinite sequence α of natural numbers always should be given
by a (finitely given) algorithm. Creating α by choosing its values α(0), α(1), . . . one-
by-one in an infinite process of free choices, as Brouwer wanted to do, is out of the
question. As we saw in Subsection 13.3, the Fan Theorem fails in such a context.
Nevertheless, Martin-Löf formulates and upholds a ‘Fan Theorem’. His strategy
is similar to Bishop’s as sketched in the previous Subsection. He redefines the
meaning of the statement ‘∀α ∈ C∃n[αn ∈ B]’. Presenting his definition somewhat
freely, one might say: he proposes to define ‘∀α ∈ C∃s ∈ B[s ⊏ α]’ as: ‘there exists
a canonical proof of ‘〈 〉 is B-secure’ as we explained this in Section 13. Martin-Löf
extends this strategy to the Bar Theorem, see the proof of Theorem 19.

21.3. An application. The Fan Theorem and Brouwer’s Continuity Principle are
used for a reconstruction of Cantor’s Uniqueness Theorem in [63].

51Bishop’s definition is questionable. F. Waaldijk discovered that the statement that the
composition f◦g of Bishop-continuous functions f, g always is Bishop-continuous itself is equivalent
to the Fan Theorem, see [60, Corollary 9.10].
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