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ON THE THEORY OF INCONSISTENT FORMAL SYSTEMS

NEWTON C. A. da COSTA

Introduction This is an expository work,* in which we shall treat some
questions related to the theory of inconsistent formal systems. The
exposition will be neither rigorous nor complete. For details, the reader
may consult the works cited in the References. (With reference to the
historical aspects of the theory, see specially [l].) In general, the
terminology, the notations, etc., are those of Kleene's book [17], with evi-
dent adaptations.

A formal system (deductive system, deductive theory, . . .) S is said to
be inconsistent if there is a formula A of S such that A and its negation,
lA, are both theorems of this system. In the opposite case, S is called
consistent. A deductive system S is said to be trivial if all its formulas are
theorems. If there is at least one unprovable formula in S, it is called
non-trivial.

If the underlying logic of a system S is the classical logic (the
intuitionistic logic, . . .), then S is trivial if, and only if, it is inconsistent.
Hence, employing such a category of logics, the inconsistent systems do not
present any proper logico-mathematical interest. Usually, we try to
change the inconsistent theories to transform them into consistent ones.
It is clear that under this transformation, some characteristic properties
of a given inconsistent theory must be preserved; for instance, the common
formal systems of set theory preserve certain traits of inconsistent naive
set theory.

Nonetheless, there are certain cases in which we might think of
studying directly an inconsistent theory. For example, a set theory
containing RusselΓs class (the class of all classes which are not members
of themselves) as an existing set, or a theory whose aim be the systemati-
zation of Meinong's theory of objects.1 Apparently, it would be as

*Lecture delivered at the First Latin-American Colloquium on Mathematical
Logic, held at Santiago, Chile, July 1970.

1. Meinong's theory is discussed, for example, by Russell (cf. [21] and the articles
by Meinong, Ameseder and Mally cited there). One of the objections formulated
by Russell against Meinong's theory is precisely that it implies a derogation of
the principle of contradiction.
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interesting to study the inconsistent systems as, for instance, the non-
eucledian geometries: we would obtain a better idea of the nature of certain
paradoxes, could have a better insight on the connections amongst the
various logical principles necessary to obtain determinate results, etc. But,
if we intend to do this, then we must construct new types of logic. In fact,
as we noted above, without the use of new logics, the inconsistent systems
would lose their logico-mathematical importance.

It seems convenient to insist on the following point: given an
inconsistent system S, our aim is not to eliminate the possible paradoxes
or inconsistencies of S, but to derive in it as many paradoxes as it is
convenient, to analyse and to study them. However, this does not mean that
we wish each formula of S and its negation to be theorems. Intuitively
speaking, in an inconsistent theory S, presenting real interest, there are
"good" theorems, whose negations are not provable, and "bad" ones,
whose negations are also theorems. In particular, if S is sufficiently
strong to contain elementary arithmetic, then it seems rather natural to
require that it must be arithmetically consistent (though it may be
inconsistent), i.e.: supposing that A is a formula belonging (in a certain
precise sense) to the elementary arithmetic of S, A and lA cannot be, at
the same time, theorems of S. An antinomy implies triviality. A paradox
is not in general an antinomy. In the sequel, we shall see how it is possible
to develop the theory of inconsistent systems.

1 The Calculi C«, C*, and C^ We introduce in this section certain proposi-
tional calculi Cw, 1 ^n <ω. Then, we proceed with the construction of the
corresponding first order predicate calculi without equality, C*, 1 ^n <ω,
and with equality, C», 1 ^n ^ω. (Co, C?, and Co will denote respectively
the classical propositional calculus, the classical (first order) predicate
calculus without equality and the classical predicate calculus with equality.)
These new calculi can be used as foundations for non-trivial inconsistent
theories, as we shall see.

1.1 The Calculi Cn As C«, 1 ^n ^ω, are intended to serve as bases for
non-trivial inconsistent theories, it seems natural that they satisfy the
following conditions:

I) In these calculi the principle of contradiction, l{A & lA), must not be a
valid schema; II) From two contradictory formulas, A and ΊA, it will not in
general be possible to deduce an arbitrary formula B; III) It must be simple
to extend C«, 1 ^n ^ω, to corresponding predicate calculi (with or without
equality) of first order; IV) Cw, 1 ^n <ω, must contain the most part of the
schemata and rules of Co, which do not interfere with the first conditions.
(Evidently, the last two conditions are vague.)

1.1.1 The Calculus Ci To begin with, we introduce the calculus Ci, which
has the following postulates, where A0 is an abbreviation for l(A & lA):

(1) A^(BΏA),
(2) (AZ)B) D ((A => (B 3 O) 3 (A D C)),
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AA^B
(3) B

(4) A & B^ A,

(5) A & JB D B,

(6) AD(£DA&£),

(7) Λ^Λvΰ,

(8) B D A v B,

(9) (A^C)D((ΰDC)3(AvΰDC)),

(10) AvΊA,

(11) ΊlA^A,

(12) 5° 3 ((A D J5) D ((A D 1J3) 3 ΊA)),

(13) A° & B° D (A & B)°,

(14) A°& 5° D (Av5)°,

(15) A° & £° 3 (A => JB)°.

We have:

Theorem 1 In Cλ all rules of deduction of the propositional calculus of

Theorem 2 of Kleene's book [17] are true, with the exception of the rule of

reductio ad absurdum, which is d can be stated as follows:

IfT,AhB°, Γ,A\-B and Γ, A hlB, then ΓhΊA.

Theorem 2 Among others, the following schemata in Cx are not valid:

ΊA^ (A^ B), IAD {A^ IB), A^ (1AΌ B),

A 3 (ΊA ̂  ΊB), A & ΊA 3 JB, A & ΊA 3 ΊJ5,

(A D B) ^ ((A => ΊJB) ^ ΊA), A ̂  Ί Ί A , (A - ΊA) 3 5,

(A - ΊA) 3 Ί £ , Ί(A & ΊA), (AVB) & ΊA 3 5,

A v E 3 ( i A D B), (A =) JB) D ( Ί . B 3 ΊA), A - ΊΊA.

Proof: It suffices to employ the matrices

A & £ : A ^ 1 2 3 A v J B : A ^ 1 2 3

1 1 1 3 1 1 1 1

2 1 1 3 2 1 1 1

3 3 3 3 , 3 1 1 3 ,

A D B: A B 1 2 3 ΊA: A | ΊA

1 1 1 3 1 3

2 1 1 3 2 1

3 1 1 1 , 3 1 ,

where 1 and 2 are the designated truth-values.

Theorem 3 In Cx all schemata and rules of deduction of the classical

positive propositional calculus are true, and if we adjoin to Ci the principle
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of contradiction, we obtain Co In Cλ we have also2:

B\AΊ B hlB D ΊA, B°, A D IB \-B D ΊA,
5°, ΊA D£ 1-15 DA, B°, ΊA D Ί ΰ h 5 ^ A,

h(A 3 ΊA) 3 ΊA, K(ΊA DA) DA,
hA° D (ΊA)°.

Theorem 4 //Aυ A2, . . ., Am are the prime components of the formulas Γ,
A, then a necessary and sufficient condition for T\-A inCois that Γ,A°,
A2°, . . . , A ° h A m d .

Definition 1 Ί*A =Dt?/ ΊA&A°.

Ί*A is the strong negation of A.

Theorem 5 In C1? Ί * has all properties of the classical negation.

For instance, we have:

f-A v Ί*A, hΊ*(A & Ί*A), h(A D B) D ((A D Ί *£) D η*A),
hA - Ί*Ί*A, KΊ*A ^> (A^ B), h(A - Ί*A) D J5.

Theorem 6 d is consistent.

A non-trivial system S is said to be finitely trivializable if there is a
formula (not a schema) F such that, adjoining F to S as a new axiom, the
resulting system is trivial. For example, the intutionistic or classical
implicative propositional calculi and the classical positive propositional
calculus are not finitely trivializable; the classical predicate calculus is
finitely trivializable.

Theorem 7 Cx is finitely trivializable.

Proof: Each formula of the type A &, Ί*A trivializes Ci

1.1.2 The Calculi C», n > 1.
Ci is not the only propositional calculus that satisfy conditions

I-IV. Leaving aside other possibilities, we shall describe a hierarchy
of calculi Ci, C2, . . ., Cw, . . ., Cω, having properties similar to those
of Ci. To introduce Cm Kn<ω, it is convenient to abbreviate 4̂OO °>
where the symbol ° appears m times, m ^ 1, by Am, and A1 & A2 & . . . Am

by AM. The postulates of C«, 1 < n < ω, are those of Ci, excepting the
postulates (12)-(15), which are replaced by the following:

(12f) B{n) D ((A D B) D ((A D IB) D Ί A ) ) ,

(13f) A(n) 8zB(n)^(A & £) ( w ) ,
(14f) Λ{n) &B{n) D (Av^) ( w ) ,
(150 A{n) 8zB(n)^(A ^B)(n).

2. M. Guillaume proved that A° D (Ί^4)° is a consequence of our postulates (in [7],
A° D (ΊA)° appears as a postulate of Ci). More generally, he noted that A^ D
(η^4)(«) i S a theorem of the calculus Cw(l ̂  n < ω), which will be defined in the
sequel. (For other propositional calculi serving the same purpose, the reader
may consult [16] and [19].)
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The postulates of Cω are (l)-(ll) above.

Theorem 8 Every calculus belonging to the hierarchy Cn, 0 ̂  n < ω, is
finitely trivializable. Cω is not finitely trivializable.

Theorem 9 Every calculus of the hierarchy Co, Ci, C2, . . ., Cω is strictly
stronger than those which follow it.

Theorem 10 (Arruda) The calculi C«, 1 ̂ n ^ω, are not decidable by finite
matrices.

Theorem 11 (Fidel) The calculi Cn, 0 ̂  n <ω, are decidable.

Cw+i is weaker than C«, n^O. Therefore, if we are trying to obviate
triviality, it is safer to employ Cn+1 to found a system, than to use Cn; if we
limit ourselves to choose a calculus of the hierarchy under consideration,
the greatest security is attained employing Cω.

Theorem 12 The schemata of Theorem 2 above are not true in Cw,

1 < n **ω.

Theorem 13 In C«, 1 < n < ω, one has:

B{n\ A^BhiB^ΊA, B{n\ AΏ iBh-BZ) lA,

B(n\ lA 3 B \--\B "DA, B{n\ ΊA 3 ΊB\-B DA,

h(A Z) ΊA) D ΊA, f-(ΊA ^A)^A,

A{») h ( Ί A ) ( w ) , h A ( w ) ( w ) .

Theorem 14 C«, 0 ̂ n ^ω, are consistent.

Theorem 15 In Cω Peirce's law, ((A D B) D A) 3 A, zs /zoί ίrwβ.

In general, the results valid for Ci can be adapted to apply to C«,

2 < n < ω.

Remark 1 It is possible to construct propositional calculi for inconsistent
systems, in which the principle of contradiction is true (cf, for instance,

[4]).

Ί .2 The Predicate Calculi C* C* C*, . . ., CJ are the first order predicate
calculi corresponding to Ci, C2, . . ., Cω.

1.2.1 The Calculus Cf First, we shall describe Cf. The list of its
postulates is that of C1 ? plus the following:

(I) -^f^y (ID V.AW.AU),

(III) AU) 3 3 , AW, (IV) 3^ξc ,

(V) Vx(A(x))°^(VxA(x))°, (VI) Vx(A(x))° D (3xA(x))°,

(VII) If A and B are congruent formulas , 3 or one is obtained from the other

by the suppression of void quantifiers, then A ~ B is an axiom.

3. Kleene [17], p. 153.
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The postulates (I)-(IV) are subjected to the usual restrictions.4

Theorem 16 All rules of Theorem 2 of Kleene's book [17] are true for Cf,
the rule of reductio ad absurdum being stated as in Theorem 1 above. The
valid schemata of the classical positive predicate logic are also valid in C*.
If we add to this calculus the schema Ί(A & lA) as a new postulate, we
get Co*.

Theorem 17 Lemmas 6-10 and Theorems 13 and 15, among others, of
Kleene's book are true for C*.

Theorem 18 If the prime components of the formulas Γ, A are Au A2, . . .,
Am, then a necessary and sufficient condition for Γ \-A in C* is that Γ, AJ,
A2°, . . .9A%\-AinCΪ.

Theorem 19 C* is undecidable.

Proof: Consequence of the foregoing theorem and of the undecidability

of C*.

Theorem 20 C* is consistent.

Theorem 21 If Γ v-A in C*, then all of the k-transforms5 of A are deducible
from the k-transforms of the formulas Γ in Cx.

Corollary 1 If v-A in C*, then all of the k-transforms of A are provable in

Ci.

Corollary 2 Suppose that A is a predicate letter formula containing only
predicate letters with zero attached variables. Then, f-A in C* if and only
if \-A in Ci

Corollary 2 shows that a propositional schema which is not valid in Cx

cannot be valid in C*. For example, the schemata l(A & lA), lA 3 (A^>B),
A & lA =3 JB, and (A ~ lA) 3 B are not provable in C*. Corollary 1 clearly
implies the non-validity in C* of schemata such as l(A(x) & ΊA(X)),
(A(x) - ΊA(x)) 3 B(x) and 3x(A(x) - lA(x)) => B(x).

Theorem 22 In C* the following schemata are not valid:

-\3x lA(x) ~ VxA(x), ΊVx ΊA(x) ~3X A(X),

l3xA(x) -VΛΓ lA(x), 3X lA(x) ~ ΊVΛΓΛ(Λ ) .

Proof: It is sufficient to consider the 2-transforms of formulas of the
indicated types and to apply Corollary 1.

1.2.2 The Predicate Calculi C*, n > 1 The postulates of C* are those of
C», 2 ^n < ω, plus the following: (I)-(IV) and (VII) introduced above and

(V,) Vx(A(x))in) ^{VxA{x)){n\
(VIJ Vx{A{xfn) D {3xA(x)){n).

4. Kleene [17], pp. 81-82.

5. Kleene [17], pp. 177-178.
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The postulates of C* are (l)-(ll) and (I)-(IV).

Theorem 23 If the prime components of the formulas Γ, A are Al9 A2, . . .,

Am, then T\-A in C* if and only if Γ, A{"\ A(

2

w), . . .,A{£ \-A in Cn,

1 < n < ω.

Theorem 24 The calculi Cί, 0 ^n < ω, are undecidable.

Theorem 25 7/* Γ hA zw C* , #tew all of the k-transforms of A are deducible

in On, 0 ^n < ω,from the k-transforms of the formulas Γ.

Theorem 26 L#£ A denote a formula of Cn; then, \-A in C* if and only if \-A

in C«, 0 < n < ω.

Theorem 27 Every calculus of the hierarchy C*, C*, C2*, . . . , C* zs strictly

stronger than those following it.

Corollary C*, 0 ^n < ω, are consistent.

Theorem 28 Cϊ, 0 <» < ω, are finitely trivializable, 6wί C* zs /zoί.

Definition 2 Ί(w)A = D e / ΊA & A (w), »^ 1.

In particular, Ί * and Ί ( 1 ) are abbreviations of lA & A°.

Theorem 29 In Cn and C*, 1 < n < ω, Ί ( w ) /zαs αZZ properties of the classical

negation.

1.3 The Calculi CJΓ CΓ, CjT, . . ., Cω are the predicate calculi with equality

corresponding respectively to C*, C*, . . ., C*. C^ is obtained from C»,

1 **n < ω, as CJ is constructed from C?. In particular, we add the new

postulates:

(I') x = x, (II') x = y =) (A(ΛΓ) =>ACy)), where the schema (II') is subjected

to the usual restrictions.6

1.3.1 The Calculus CΓ A list of the most important results regarding

Cϊ follows.

Theorem 30 We have in C^ (with the same restrictions ofC^):

\-x = x,\-x = y ~3 y = x,\-x = y & y = z 3 x = z,

Y-x = 3; D (Λ(ΛΓ) ~ACV)), HV3̂  3Λ;(ΛΓ = y),

(Λ(ί))° i-ΆM & Ί A(ΛΓ) ^ ^ ,

H V y ( F ( y ) - 3 ^ = y &^W),
h-3x(FW &V3;(F(3;) ^ x = y)) ~3x Vy(x = y ~F(y)),

Y-3xF{x) & VxVy(F(x) & JFty) => ΛΓ = 3;) ~ 3x(F(x) & Vy(^(y) D * = 3>)),

(F(i))°, (ΛΓ = j>)° \-3yVx(y=x - F(ΛΓ)) - 3xF(x) & Ί3ΛΓ(F(Λ;) & 3y(x Φ y & JF1^))).

Theorem 31 A 1 ?A 2 J . . . ,A w αre £&e prime components of the formulas Γ,

A. Γfcew, ΓHA m C= if and only if Γ, Aϊ, A£, . . ., A° h-A m Cϊ

6. Kleene [17], p. 399.
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Theorem 32 Cf is undecidable, and adjoining to it the law of non-contra-
diction, we obtain C^.

Theorem 33 If the symbol = does not occur in the formula A, then \-A in
C7 if and only ifhA in Cf.

The preceding theorem is important, because it shows that the
non-valid schemata of C* are also non-valid in Cf. For example, the
schemata lA D (A D B), Ί(A & Ί A ) , (A(X) ~ ΊA(x) D B)9 and l(A(x) & ΊA(x))
are not valid in Cϊ

1.3.2 The Calculi C«, n > 1 We can prove for Cn, 1 < n ^ ω, among others,
the following results.

Theorem 34 The schemata and formulas of Theorem 30 are true in C»,
1 < n < ω, replacing the symbol ° by (wl The schemata and formulas in
which ° does not occur are also true in Cω

Theorem 35 Let Aι,A2, . . ., Am be the prime components of Γ, A. We
have: Γ hA in C= if and only if Γ, A{? , A(

2

w), . . ., A^] h i in C», 1 < w < ω.

Theorem 36 C», 0 <ft < ω, «rβ consistent and undecidable.

Theorem 37 Every calculus of the hierarchy C^, CΓ? Cϊ", . . . , CS is strictly
stronger than those following it. The calculi CS, 0 ^n<ω, are finitely
trivializable. CS ̂  not finitely triυializable.

Theorem 38 In C«, l ^ w < ω , Ί ( w ) has all properties of the classical
negation.

From the last result, we conclude that Co (respectively C*5 Co) is
contained (under a convenient translation) in C« (respectively C*, Cw),
1 ^ n < ω. Cn is also a conservative extension of C*, O^n^ω. The
replacement theorem7 is not true for Cn, C*, and C», 0 < n ^ ω. In
particular, we do not have (in general) in these systems: A ~ B \-iA ~ IB.

2 The System NFi The calculi constructed may be used, e.g., to examine
the well-known paradoxes. Let us analyse informally the paradox of the
liar. In an intuitive language £n based on C«, 0 ^n < ω, one can accept that
it is possible to talk about sentences like in ordinary language. (The
languages J£n, 0 < n < ω, are pressupposed to be strong enough from the
point of view of the power of expression.) Taking n = 1 to fix our ideas, a
simple formulation of the liar paradox is as follows:

a) This sentence implies its negation.

Reasoning as in the classical case (n = 0), one deduces that

ha & lα.

However, as A &ΊA n> £?, ΊA ^> (A D B), etc., are not valid schemas of

7. Kleene [17], pp. 115 and 151.



ON THE THEORY OF INCONSISTENT FORMAL SYSTEMS 505

Ci, a does not cause directly any difficulty in =d. But there is a strong
form of the liar which cannot be surmounted by the device of using a
language whose underlying propositional calculus is Ci, namely:

β) This sentence implies its strong negation.

With an argument formally analogous to the classical one, it is
possible to prove that

H β & Ί * β.

In this case, since \-A & Ί * A z> B in Ci, we have a real antinomy in
<d: β makes our language trivial.8 In a few words, to each £n, 0 ^n < ω,
there corresponds a convenient formulation of the liar paradox which makes
it trivial. The same is not true with respect to -Cω Hence, in languages of
the category of *CW, 0 < n < ω, some limitations on self-reference must be
imposed. Nevertheless, this does not signify that we are compelled to
eliminate all forms of self-referential statements. Even statements such
as a need not be eliminated from «d as senseless, though it is self-
contradictory. We do not make any further comments on the non-
mathematical paradoxes. Now, we shall study a system NFi of set theory
which is inconsistent and apparently non-trivial.

Remark 2 Related to the subject matter of the paradoxes there is the
problem of the universe of discourse of a language. To exemplify, let us
call U1 the universe of discourse of <d Depending on the properties of an
"inconsistent" object σ (for instance, the round-square), it can belong to
Uii if the definition of σ does not imply a contradiction of the form
A & Ί*A, then it may be legitimate to accept σ as a good element of Ulm

Clearly, the same is not true of «d. Paraphrazing Quine, one could
maintain that to be is to be the value of a variable, in a given language with
a convenient logic. Loosely speaking, if one weakens the underlying logic
of a certain language, the objects about which it is possible to talk
become more numerous. Logic and ontology are intimately correlated.

2.1 Description of NFx The underlying logic of HFλ is Cϊ and its only
specific symbol is the binary predicate constant e. Hence, the primitive
symbols of NFi are the individual variables, 3, &, v, Ί, V, 3, (, ), =, and e.
The notions of formula, (formal) proof, etc., are defined as usual (cf. [17]).

Definition 3 If F(x) and G(x) are formulas whose variables are subjected to
the common conditions, then:

8. A variant of the liar which can be directly reproduced in £n, 0 < n ^ ω, is the
following. Suppose that X.n{0 < n ^ ω) contains propositional variables and a rule
of substitution for these variables. (This is surely not the case of our calculus
Cw(0 ^ n ^ ω), as we defined it.) Then, the statement (p is a propositional vari-
able):

This sentence implies p.

is easily seen to be antinomical in £n, 0 ^ n ^ ω.
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xeyF(y) =Def 3z{Vy(ye z ~ F(y)) &xe z),

yF(y) e x =Def 3z(Vy(ye z ~ F(y)) &zex),

xF(x) e yG(y) =Def 3t 3z(Vx(xe t ~ F(x)) & Vy(ye z ~ G(y)) btez),

x = yF(y) =Def 3z(Vy(ye z ~ F(y)) & x = 2) ,

i-P(y) = * =De/ 32(Vj?(3;€ 2 - F( y)) &* = *),
xF(x) = yF(ή) = D e / 3f 3^(VΛΓ(^C ί - F(ΛΓ)) & Vy(ye z - G(y)) &t=z),

3xF(x) =Def 3t VΛΓ(AΓ€ t ~ F(ΛΓ)),

3 !xF(x) =Def 3x(F(x)) & Vy(F(y) D x = 3>)

Definition 4 A formula F(ΛΓ) is said to be normal if it is stratified9 or if
unstratified and neither (the symbolic abbreviation) Ί * nor ^> occur in it.

Specific postulates of NFi*.

(PJ V#(#e y - xe z) 3 z = y.

(P2) 3^V^(ΛΓ€ 3; ~ -F(ΛΓ)), where x and y are distinct variables, y does not
occur free in F(x) and this formula is normal.

In the following postulates we do not make explicit the pertinent
restrictions:

(P3) xF{x) = yG(y) D (A(xF(x)) ~ A(yG(y)).
(P4) 3xF(x) & A(xF(x)) D 3M(ί).
(P5) 3 i F W & V£A(ί) 3 A(^F(ΛΓ)).

In the sequel, we shall use the terminology and notations of Rosser
[20], with clear modifications.

Theorem 39 In NFΣ we have {under the usual restrictions):

h3xF(x) ~ 3 \xF{x), h3xF(x) - 3 \y Vx{xe y ~ F(x)),
h3xF{x) ~ xF(x) = xF(x), h3xF(x) 3 (xFU) = yF(y)),
hxF(x) = yG(y) 3 3xF(x) & 3yG(y), hVΛ;(F(x) - G(x)) & g i f W 3 3xG(x),
Y-xF(x) = yG(y) 3 yG(y) = i F W , hA(ίF(x)) ~ A($F(y)),
hxF(x) = jίG(j ) & 5>G(>;) = zH(z) 3 ^F(x) = zH(z),
h3xF(x) - VΛΓ(Λ: e xF(x) - FW), h3Λ, h3V,

h3xF(x) 3 Vj;(3; = iF(jvr)) - Vx(xey - F(ΛΓ)),
HVΛ:(P(Λ:) - Q(x)) 3 Jp(^) = χQ(χ)9

hVy \fx(xex{xey) ~xey), \-Vy(y = x(xe y)),
\-3x(x Φ x & (x = #)°), hV y Vz 3^(^e 3̂  v.ve ^),
\-Vy Vz 3^(^63; & xez), hVy 3^/3;) ,
HVΛ: Vy{xe "y ~ xi y), \-x Ό'x = x,\-x Ό y = y U x,
h(x U 3>) U z = x U (3> U 2 ) , hΛΓ U (Λ: Π 3;) = x,

\-x Π (y Ό z) = (x Γ\ y) u (x Π z), \-x nx = x,hx ny = y nxy

h(x ή y) n z = x n (y n z), hx n (x u y) = x, \-x U (y Π z) = (x Ό y) Π (x u z),
Y-x Π Λ = Λ, H Λ = V, l-tf U Λ = x, hx Π V = x,

h-ΛC V, HXU V = V, I-VΛ: 3USC(#), HVΛΓ 3SC(ΛΓ).

9. C/., for example, Rosser [20] and Quine [18].
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Theorem 40 NFX is inconsistent (but apparently is not trivial).

Proof: In NFX we can derive Russell's paradox. That is, \-3x(xι(x) and,
consequently, \-x{xfίx) e x(xf(x) & x(xix) ix(xix).

Remark 3 The class R = x(x^x) has many interesting properties. For
example: \-RiίR, t-ReR,t-ReR & R{R> ^R U R = V, *-Re R Π R, H3USC(Λ)
and H3SCCR).

Remark 4 The restrictions imposed on postulate (P2), the schema of
separation, are necessary, because the existence of classes such that
x(l*(xe x)) and x(xe x o B), where B is an arbitrary formula, would make
NFX trivial.10

2.2 NFi and Quine's System NF

Definition 5 The ~!*-transform of a formula F is the formula F* obtained
from F by replacing in it every occurrence of Ί by an occurrence of Ί * .
If Γ is a sequence of formulas, then Γ* is the corresponding sequence of
the Ί*-transforms of the formulas of Γ.

Theorem 41 If Γ \-F in NF (Quine's system [18]), then Γ* HF* in NFlβ

Proof: Consequence of Theorem 38 and of (the form of) the postulates of
NF and NF^

Corollary 7/ι-FmNF, then hF* in NFX.

The previous corollary shows us that NF is contained in NFJL. Hence,
this last system is strictly stronger than Quine's. (Granting that NF is
consistent.)

Theorem 42 The non-triviality of NFX implies the consistency of NF.

To sum up, NFX is an inconsistent and very strong system. Apparently,
it is not trivial, but we cannot prove its non-triviality more or less in the
same sense in which one is unable to prove the consistency of the
traditional strong deductive systems. This fact is a consequence of a
generalization of Gΰdel's theorems, which covers the case of certain
inconsistent formal systems.11

Remark 5 NFi can be reinforced in several ways. As an outcome, other
paradoxes are derivable in it (see [12]). NFX contains elementary arith-
metic and is apparently arithmetically consistent in the sense referred to
in the introduction to the present work. In an analogous way to that in
which we have constructed NFi, it is possible to construct infinitely many
inconsistent set theories NF1? NF2, . . ., NFω, whose properties are similar

10. This question is connected with the Curry-Moh Schaw-Kwei paradox. For

details, see [12].

11. See [3] for details.
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to those of NF1? using as underlying logics respectively the calculi
w , C2 , . . ., C ω .

Remark 6 Our starting point to construct NF1 was NF. We could also
employ instead any one of the extant set theories, such as the systems of
Zermelo-Fraenkel and of von Neumann-Bernays-Gδdel.

Concluding remarks The delineated theory seems important to us, among
others, for the following reasons:

1) In several inconsistent (and apparently non-trivial) systems, such that
NFi, we can develop, by various devices, most of the extant set theories.
It is possible to define, in these systems, certain "paradoxical" sets,
whose existence can be proved in them, but that do not exist in the classical
theories. This fact does not cause any difficulty and from a precise point
of view such "paradoxical" sets exist more or less as the usual sets of a
classical theory are said to exist. (These new sets may be thought of as
existing in a similar sense in which, for instance, the points at infinity
exist in eucledian plane geometry.) All these questions of existence, to
which we may add the questions concerning the meanings of the formulas
that infringe the principle of contradiction and of the very nature of this
law, originate interesting and important philosophical problems. Evidently,
the theory of inconsistent systems can contribute to clarify such issues.

2) The relations between the schema of separation and various types of
logics, weaker than the classical, were studied. Under suitable precise
conditions, the schema of separation is proved to be incompatible with
every one of a series of weak elementary logics. It was only possible to
discover this fact by a direct study of inconsistent set theories and related
topics.
3) A lot of problems of mathematical character have been originated by the
construction of logical systems that are apt to function as foundations for
inconsistent and non-trivial theories. We mention here only the question
referring to the algebrization of certain propositional calculi, such as Cn,
1 < n < ω.

4) Some parts of the theory of inconsistent systems are related to modal
and intuitionistic logics. These connections, a little surprising at first
sight, are also the starting point of important problems, deserving of
serious research.
5) The semantical analysis of certain new calculi, in the theory of
inconsistent systems, seems to be very promising, and numerous results
have been obtained already. In particular, some new types of models have
been defined and some classical results of model theory generalized.
(See, for instance, Fidel [14] and [15].)

6) Dialectic logic is intimately connected with the theory of inconsistent
systems. There are several conflicting conceptions of dialectic logic,
and for most specialists it is neither formal, nor even in principle
formalizable. Nonetheless, employing techniques used in the theory of
inconsistent systems, it is apparently possible to formalize some of the
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proposed dialectic logics. It is convenient to note that the formalizations
we are talking about are analogous in nature to the formalizations
presented for various parts of intuitionistic mathematics: we do not
intend to found dialectic logic on given formalisms, but only try to
make explicit certain "regularities" of the "dialectical movement."
Thus, we may throw a new light on dialectical logic.
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